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ABSTRACT 

 

TEMPORAL DYNAMICS OF THE SKIN MICROBIOME IN DISEASE 

Michael A Loesche 

Elizabeth A Grice, PhD 

 

The skin is colonized by communities of bacteria, fungi, and viruses, collectively referred to as 

the skin microbiome. These microbial communities are shaped by the topology and diseases of 

the skin. Dysbiosis of the cutaneous microbiome has been associated with several ailments of the 

skin including atopic dermatitis, acne, rosacea, psoriasis, and chronic wounds. However, our 

understandings of the processes by which these microbes initiate, maintain, or modulate skin 

diseases is lacking. Moreover, previous research on the topic has largely been limited by cross-

sectional study designs, neglecting the natural dynamism of microbial communities. Here we 

present a comprehensive analysis of the temporal dynamics of the skin microbiome in various 

diseases. In the first section, we characterize the diversity and dynamics of both bacterial and 

fungal communities colonizing chronic wounds and its associations with clinical outcomes. In a 

study of 100 subjects with diabetic foot ulcers, we sampled the wound microbiota in 2-week 

intervals until healing, amputation of 26 weeks of follow-up. We demonstrate the high levels of 

community instability in chronic wounds and expose the positive association between wound 

healing community instability. We also reveal the effect of antibiotic perturbation on the 

microbiota. The fungal component was found to have associations with various bacteria and 

clinical outcomes. Our results should inform the design of future studies and provides evidence 

that microbial dynamics may be an effective biomarker for identifying high-risk ulcers. The 
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second section investigates the body-site specific effects of psoriasis on the skin microbiome and 

how it responds to therapy. We reveal these patterns in a study of 114 subjects, across 6 body 

sites, and over 112 weeks of follow-up. The effect of psoriatic lesions was found to be mild and 

body-site specific. In contrast, ustekinumab treatment was found to induce moderate shifts in 

microbial composition, including an increase in atypical skin bacteria and inter-individual 

heterogeneity. These results suggest that the effect of psoriasis lesions is secondary to the effect 

the broad effects of the immune environment. Together the work presented in this thesis 

represents a significant advancement in our understanding of the microbial dynamics of the skin 

and their associations with human health.  
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CHAPTER 1 – Introduction to the Skin Microbiome 

 

1.1 From Microscopes to Microbiomes 

 It was advancements in the field of microscopy that led to the discovery of bacteria and 

other microbes inhabiting our world in 1676 by Antonie van Leeuwenhoek (Dobell 1960), 

ushering in an era of awe and fascination with the microscopic world that persists to this day. It 

did not take long before many noticed large discrepancies between numbers of bacteria visible 

under a microscope and the number of colonies they could culture on a plate. In some cases the 

difference between the two was several orders of magnitude, a phenomenon known as the great 

plate count anomaly (Staley & Konopka 1985). Bacteria, such as E. coli, that are easily cultured 

have fueled decades of discovery in genetics, molecular biology, and modern medicine. However, 

the fastidious and oligotrophic bacteria that have eluded being cultured greatly outnumber those 

that have. It is now estimated that 95-99% of bacteria are not readily culturable, though focused 

efforts to improve culturing surveys are changing this number (Browne et al. 2016).  

  

It was the development of next-generation sequencing technology that facilitated the 

study of entire microbial communities or microbiomes, overcoming the biases and limitations of 

culturing techniques. The term microbiome refers to the community of bacteria, fungi, viruses 

and other microbes occupying an ecological niche. Microbiome studies have revealed rich and 

complex communities inhabiting nearly all surfaces of the environment, including the human 

body (Gevers et al. 2012). They have led to significant increases in our understanding of 

microbial ecology, host-microbe interactions, and microbe-microbe interactions. To manage the 

massive amounts of data generated by microbiome studies, the field of microbiology has become 

the recipient of a rapid infusion of bioinformatics and computational biology. The rich data sets 
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have also attracted inter-disciplinary collaborations resulting in the adoption of theories and 

methodologies from many fields including ecology, multivariate statistical modeling, machine-

learning, evolution, phylogenetics, and network analysis.  

 

The study of the world’s microbiomes is still in its infancy, though rapid progress is 

being made. Studies characterizing microbial communities and documenting ecological 

phenomenon are being published at an ever-increasing rate. Standards for sample collection, 

processing, and analysis are beginning to become formalized; and tools to manipulate the 

microbiome, experimentally and medically, are being developed. After more than a century of 

mechanistic and hypothesis driven work, microbiology has returned to the stage of observation. 

Like the naturalists of the past, we have been give a new lens to discover a world previously 

unknown. 

 

1.2 The Human Microbiome 

The human microbiome is the collection of ecological communities of bacteria, fungi, 

viruses, and other microbes that colonize our bodies. The commensal bacteria perform a variety 

of beneficial roles including immune system education, vitamin production, and protection form 

invading pathogens. They inhabit nearly every surface of the human body exposed to the external 

environment including the skin, gut, vagina, oral cavity, and even the upper airways of the lung 

(Grice & Segre 2012; Charlson et al. 2012). While some constituents are conserved, the structure, 

composition, and biomass of the human microbiome vary greatly between body sites and are 

exquisitely sensitive to variation in their microenvironment. As such, the microbiome often 
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reflects the health of its host, and in many cases may be a driving factor in the initiation or 

persistence of disease (Cho & Blaser 2012).  

 

The complexity of human-microbe interactions is staggering in its breath and depth. Even 

the bacterial component alone, by far the best studied, is unfathomable in its scale. The average 

human body is composed of 30 trillion cells, but it is colonized by approximately 39 trillion 

bacterial cells (Sender et al. 2016). These commensal bacteria interact with their human host via a 

wealth of secreted compounds, metabolites, antigens, and occasionally toxins. They also interact 

with each other by competing for nutrients, producing antibiotics and bacteriocins, facilitating 

horizontal gene transfer, and myriad other antagonistic and mutualistic interactions. Nowhere is 

this more apparent than in the gut, where the microbiome has been shown to contribute to disease, 

modulate physiologic responses to diet, and provide protection from invading pathogens 

(Shreiner et al. 2015). There is mounting evidence for the role of the gut microbiome in 

inflammatory bowel diseases (Morgan et al. 2012), coronary artery disease (Koeth et al. 2013), 

obesity (Turnbaugh et al. 2006), insulin resistance (Suez et al. 2014), depression (Foster & 

McVey Neufeld 2013), hepatic encephalopathy (Bajaj et al. 2012), and differential drug 

absorption (Clayton et al. 2009). Moreover, it is well established that antibiotic perturbations of 

the gut microbiota leads to dysbiotic states (Modi et al. 2014), which increase the risk of 

developing Clostridium difficile infections (Buffie et al. 2014), which can be successfully treated 

with fecal microbiota transplantation (Kassam et al. 2013). 

 

The centrality of the gut microbiome in many ailments has raised the possibility that the 

microbiome of other body sites may hold similar promise as driving determinants of health and 

disease. Indeed studies of the human microbiome across the body have borne out this belief. 
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Alterations in the vaginal microbiome have been linked to bacterial vaginosis (Mayer et al. 2015), 

chronic yeast infections (Liu et al. 2013), and preterm delivery (DiGiulio et al. 2015). The oral 

microbiome may contribute to periodontal disease and dental caries (Wade 2013). Even the lung, 

which is generally thought to be a sterile site, has been shown to have a microbiome that can 

reflect the immunity status of its host (Charlson et al. 2012; Wang et al. 2016; Young et al. 2014; 

Quinn et al. 2014).  

 

Seminal work put forth by Grice et al characterized the healthy skin microbiome and how 

it varies spatially across the body(Grice et al. 2009). Subsequent studies have since linked 

dysbiosis of the skin microbiome with psoriasis (Takemoto et al. 2014; Alekseyenko et al. 2013; 

Ganju et al. 2016), chronic wounds (Grice et al. 2010; Gardner et al. 2013), acne (Fitz-Gibbon et 

al. 2013), and atopic dermatitis (Kong et al. 2012); however, whether the skin microbiome plays a 

causative or reactive role remains to be established. The majority of these studies implemented 

cross-sectional study designs, and those with longitudinal analyses have been limited by sample 

number. Consequently, the temporal dynamics of the skin microbiome in disease are poorly 

understood and may yield better understanding and potential therapeutic targets for diseases of 

the skin. The work presented here endeavors to advance our understanding in this regard by 

characterizing the microbial dynamics of chronic wounds and psoriasis and their associations 

with clinically meaningful outcomes. 

 

1.3 Microbiome Workflow 

 Microbiome studies can be broadly classified into metataxonomic and metagenomic 

analyses. Metataxonomic studies, the focus of this work, involve the sequencing of evolutionarily 
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conserved marker genes, which serve as a proxy for taxonomic classification. The 16S rRNA 

gene has been extensively used to characterize prokaryotic communities, whereas the 18S rRNA 

gene and the internal transcribed spacer (ITS) regions are used for fungal communities. 

Bacteriophage and other viruses do not possess universally conserved genes, making 

metataxonomic analyses impossible to perform.  These marker genes contain conserved and 

hypervariable regions, which allow for universal primer annealing and taxonomic classification 

respectively. The 16S rRNA gene is approximately 1.5 kilobases in length and contains 9 

hypervariable regions, denoted V1 through V9. Because of the current limitations in sequence 

lengths generated by next-generation sequencing technologies, specific sub-regions must be 

chosen for amplification and sequencing. The most commonly used sub-regions are V1-V3 and 

V4, however, resident evidence suggests that the V1-V3 region introduces less bias for skin 

communities (Meisel et al. 2016). In contrast, metagenomic studies involve shotgun sequencing 

the combined genomic content of the entire community. Metagenomic studies provide both a 

taxonomic and functional perspective of the community, but require much greater sequencing 

depth, computational resources, and controlling for human contamination. 

 

 Metaxonomic studies begin with the aggregation of similar sequences into clusters, 

termed operational taxonomic units (OTU), which serve as proxies for species (Kopylova et al. 

2016). OTUs are taxonomically identified and are then used to estimate alpha and beta diversity 

by a variety of metrics. Alpha metrics measure the diversity intrinsic to a sample by quantifying 

the richness (number of observed OTUs) and evenness of the community. Beta metrics measure 

the amount of shared diversity between samples.  Diversity metrics differ in how abundance or 

phylogenetic relationships are weighted, which reveal different components of the community 

structure. While there is considerable diversity in specific algorithms or metrics applied, the 
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popular adoption of software packages such as QIIME and MOTHUR has partially standardized 

these analyses (Caporaso et al. 2010; Schloss et al. 2009). 

 

1.4 The Structure and Function of Human Skin 

 The skin is one of the most exposed organs of the body and serves a critical role as the 

primary interface between the external environment and the underlying tissues. The skin provides 

a barrier against constant physical, chemical, and immunological insults. It also performs key 

homeostatic functions in regulating body temperature, fluid balance, and production of vitamin D 

(Telofski et al. 2012). The skin covers approximately 1.8 m2 with multiple microenvironments 

created by variation in exposure (folds, invaginations, and clothing), sweat and sebum production, 

and hair distribution. The diversity of skin microenvironments is reflected by the rich and 

complex communities of microbes that colonize the skin. Thus, to fully understand the skin 

microbiome and its interactions with the skin, we must be familiar with the biology and topology 

of the skin. 

 

The skin is composed of two layers, the dermis and epidermis, which rest above a layer 

of subcutaneous fat (Simpson et al. 2011). The deeper of the two, the dermis is composed of 

dense, irregular connective tissue and contains a variety of receptors, vessels, and glands involved 

in maintenance of epidermal integrity. Superficial to the dermis is the epidermis, which itself is 

composed of four layers of keratinocytes various stages of development. The stratum basale, as 

the name implies, is the basal layer, which is separated from the dermis by the epidermal 

basement membrane (Fuchs & Raghavan 2002). This layer contains the undifferentiated stem 

cells that undergo asymmetric division to give rise to the stratum spinosum. In this layer, the 
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immature keratinocytes begin to flatten and develop lamellar bodies and keratin fibrils. As 

keratinocytes continue to mature, they develop into the stratum granulosum, characterized by 

abundant keratohyalin granules. The granules contain filagrin, keratin, loricin, and involucrin, 

which are critical for the proper barrier function of the epidermis. To complete the differentiation 

process, the keratinocytes then anucleate and fully flatten forming the stratum corneum. Cells at 

this stage are termed corneocytes for their highly cornified envelope (Candi et al. 2005).  

  

 The orderly layers of the epidermis are regularly interrupted by hair follicles and glands 

that extend into the dermis. Sebaceous glands specialized in the secretion of a lipid-rich substance 

termed sebum, which contributes to the waterproofing of the skin (Zouboulis & Boschnakow 

2001). The glands are often associated with hair follicles forming pilosebacious units, particularly 

prevalent on the face and scalp. These units provide an ideal environment for anaerobic bacteria 

that metabolize the secreted lipids into free fatty acids, contributing to the relatively acidic pH of 

the skin (Puhvel et al. 1975).  Sweat glands in contrast are distributed throughout the body, 

though they are particularly concentrated in the axillae, palms, soles, and forehead (Lu & Fuchs 

2014). The eccrine sweat glands produce a salty solution primarily composed of sodium-chloride 

and water, which is critical to their role in thermoregulation. The apocrine sweat glands secrete a 

more specialized solution including steroids, proteins, and lipids, which are thought to be 

involved in pheromone production and are particularly active during puberty. The apocrine 

secretions, initially odorless, are metabolized by microbes into volatile compounds associated 

with body odor. 

 

 Critical to the barrier function of the skin is its role in protection again invading 

pathogens. Skin immunity is mediated primarily by keratinocytes and cells of both the adaptive 
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and innate immune system (Pasparakis et al. 2014). As part of its immunological role, 

keratinocytes produce a variety of antimicrobial peptides, which function as broad antibiotics. 

Keratinocytes express Toll- and Nod-like receptors, which are activated by conserved molecules 

produced by commensals and pathogens alike (Heath & Carbone 2013). When activated, 

keratinocytes are prolific producers of proinflammatory cytokines and chemokines, which recruit 

nearby cells of the immune system. Langerhans cells, a dendritic cell subset, monitor the dermis 

and epidermis for microbial antigens, though they are also involved in promoting tolerance to 

self-antigens. When activated by foreign antigen, Langerhans cells will migrate to the skin-

draining lymph nodes and present the offending antigen to naïve T-cells. Differentiated effector 

and memory T-cells then migrate to the skin to address the potential pathogen.   

 

1.5 The Healthy Skin Microbiome 

The skin features rich and complex communities of microbes, which reflect the diversity 

of microenvironments of the body. Body sites may be sebaceous, moist, or dry; haired or 

glabrous; exposed or occluded. They vary in humidity, pH, temperature, and level of 

antimicrobial peptides. These features define the microenvironments that microbes interact with 

and are major determinants of the community composition and structure. In general, the skin is 

dominated by four major taxa – Propionibacterium, Staphylococcus, Corynebacterium, and 

Proteobacteria – though the relative abundances of each vary with body site (Grice & Segre 

2011). Foundational work by Grice et al revealed the topographical diversity of the bacterial 

microbiome at 20 distinct body sites, characterized as moist, sebaceous, or dry (Grice et al. 2009). 

Sebaceous sites were dominated by Propionibacterium species, with some contributions of 

Staphylococcus species. The moist sites were dominated by a combination of Corynebacterium, 
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β-Proteobacteria, and Staphylococcus species, though the distribution between these three varied 

considerably. The dry sites in contrast are more diverse, with no taxa being particularly dominant, 

however, increased prevalence of β-Proteobacteria and Flavobacteriaceae species were apparent. 

Sebaceous sites exhibited low levels of community diversity, whereas the dry sites exhibited the 

highest levels. This was found to be true for both the number of observed OTUs (richness) and 

Shannon Diversity Index (evenness).  

 

 Body sites have been shown to be the greatest determinants of community structure in 

healthy individuals. Community differences between body sites of the same individual are 

significantly larger than those between individuals of the same body site (Costello et al. 2009). 

Even so, differences between individuals at the same body site are greater than those between 

contralateral samples of the same subject and body site. Similarly, individuals are more similar to 

themselves over time (1-3 months), than between individuals at the same time point (Grice et al. 

2009; Costello et al. 2009). Importantly, skin microbiome was shown to be less stable than 

communities of the gut or mouth (Costello et al. 2009), however, a recent metagenomic analysis 

found the skin to be more stable than previously reported (Oh et al. 2016).  

  

 Body sites also vary in the permissiveness of accepting microbiome transplants from 

other body sites. Costello et al found that the microbiome of the forehead, a sebaceous site, was 

significantly more resistant to microbiome transplants than the forearm, a dry site (Costello et al. 

2009). The forehead also regained its original community structure faster than the forearm. This 

suggests that sebaceous sites exert more selective pressures on the microbiota than dry sites. 
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 Fungal communities colonizing the skin have not been as extensively studied, but are 

beginning to emerge (Findley et al. 2013). Malassezia species were found to dominate fungal 

communities at most body sites, though species level signatures could be detected. In contrast, the 

fungal communities of the foot exhibited much greater levels of diversity and had significant 

contributions from Aspergillus and Epicoccum. Interestingly, community types clustered by body 

site geography rather than physiologic niche (sebaceous, moist, dry). This suggests that the fungal 

communities are less sensitive to these selective pressures. 

  

 The microbiota of the skin develops with age, beginning with birth and normalizing with 

the completion of puberty. Neonatal skin is markedly different from that of adults – the stratum 

corneum is thinner and composed of smaller corneocytes (Stamatas et al. 2010), the epidermal 

barrier is more permeable as a result of lower lipid content (Nikolovski et al. 2008), and the skin 

pH is more alkaline (Giusti et al. 2001). The cutaneous microbiome of neonates is marked by 

high levels of Staphylococcus and Streptococcus, but body-site specific patterns begin to emerge 

by six months of age (Capone et al. 2011). Using Tanner stages to distinguish between children 

and adults, a study found that subjects in late puberty had developed the adult-like dominances of 

Propionibacterium and Corynebacterium (Oh et al. 2012).  Even whether a neonate is born 

vaginally or via Caesarean section has profound differences on the composition of the skin 

microbiota (Dominguez-Bello et al. 2010); however, it is unclear what impact this has on health 

outcomes. In contrast to age, the effect of gender on the skin microbiome is less clear and likely 

dwarfed by individual-specific forces (SanMiguel & Grice 2014). 

 

 The interactions between the immune system and the cutaneous microbiome are of 

critical importance in determining the efficacy of the former and the composition of the latter 
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(Belkaid & Tamoutounour 2016). There is a growing appreciation for the role of the skin 

microbiota in educating the immune system. One study compared the cutaneous immunity 

profiles of germ-free (GF) and specific pathogen-free (SPF) mice (Naik et al. 2012). This study 

documented significant decreases in the production of IFN-γ and IL-17A and increased presence 

of Foxp3+ regulatory T-cells in GF mice. When mono-colonized by the human commensal 

Staphylococcus epidermids, the IL-17A deficiency was abrogated. When applied to GF mice 

infected with Leishmania major, S. epidermidis mono-colonization was enough to correct the 

defective immune response normally mounted by GF mice. S. epidermidis has also been shown to 

increase the production of antimicrobial peptides and proinflammatory cytokines, through its 

activation of TLR2, leading to improved responses to infection with the bacteria Group A 

Streptococcus and human papilloma virus (HPV) (Lai et al. 2010; Wanke et al. 2011; Percoco et 

al. 2013).  Lipoteichoic acid, a component of gram-positive cell walls, may also modulate TLR3-

mediated inflammation in keratinocytes during acute injury (Lai et al. 2009). The immune system 

also shapes the cutaneous microbiome as demonstrated by studies in humans with primary 

immunodeficiencies (Oh et al. 2013). Immunocompromised subjects’ skin was marked by 

increased permissiveness to the opportunistic pathogen, Serratia marcesens, and other atypical 

bacteria. Longitudinal stability and site specificity were also noted to be less pronounced in these 

subjects, suggesting that the immune system plays an active role in defining the cutaneous 

microbiome.  

 

1.6 Wound Healing and Chronic Wounds 

 On occasion the integrity of the skin may be compromised by traumatic injury or some 

other insult to the skin resulting in a wound. The wounded skin then commences a series of 
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organized and well-characterized processes collectively referred to as wound healing. Wound 

healing can be divided into four phases with considerable overlap: hemostasis, inflammation, 

proliferation, and remodeling; however, some include hemostasis as a part of the inflammation 

phase (Velnar et al. 2009). The process begins with coagulation and the formation of a fibrin-rich 

clot, ensuring hemostasis and additionally providing a matrix for tissue regeneration. Platelets, 

embedded in the clot, degranulate, releasing chemokines and growth factors critical for 

facilitating keratinocyte and leukocyte migration to the wound and cellular proliferation (Gurtner 

et al. 2008).  

 

Soon after, the early inflammation phase commences with the infiltration of neutrophils 

into the wounded tissue (Hart 2002). Their primary purpose is to prevent infection by 

phagocytosing bacteria and cellular debris. Neutrophils also produce elastases and collagenases 

that assist in degrading the extracellular matrix, facilitating migration of other cells. The late 

inflammatory phase begins 48-72 hours after injury and is characterized by the migration of 

macrophages to the wound, which continue the process of phagocytosis and crucially, produce 

copious amounts of additional growth factors promoting wound healing.  

 

The proliferative phase begins at approximately the third day following injury and may 

persist for two weeks or more depending on the extent of injury (Velnar et al. 2009). Fibroblasts 

migrate into the wound and produce hyaluronan, proteoglycans, fibronectin, and pro-collagen, 

which replace the makeshift fibrin-matrix created during the coagulation phase. After the first 

week, fibroblasts mature into myofibroblasts, adhere to the extracellular matrix and contract, 

pulling the edges of the wound closer together. During this phase, new blood vessels develop to 

perfuse the regenerating tissue with a process termed angiogenesis. Endothelial cells proliferate 
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and migrate into the wound following chemotactic and proliferative signals. Together these 

processes lead to the creation of vasculature, connective tissue, and extracellular matrix that 

collective is termed granulation tissue. Re-epithelialization, the migration and proliferation of the 

epithelial keratinocytes, begins as early as the first day of wounding but is most pronounced 

during the proliferative phase.  

 

Finally, the wound undergoes the remodeling phase, during which the healing tissue is 

remodeled into mature, healthy skin. This includes thickening, organizing, and cross-linking of 

collagen bundles and degradation of hyaluronic acid and fibronectin fibers. This process develops 

the tensile strength of the wound and may take weeks to years to finish, depending on the size and 

location of the injury. 

 

In chronic wounds, this process is delayed or halted in the inflammatory phase. In the 

case of diabetic foot ulcers, a common and costly complication of diabetes, these wounds may 

persist for months to years before healing or in many cases terminating in amputation (Wolcott 

2015). Chronic diabetes results in significant impairments of upwards of 100 physiologic factors, 

dramatically increasing the risk of foot ulceration and impeding nearly all aspects of wound 

healing (Brem & Tomic-Canic 2007). The hyperglycemic state of subjects with diabetes results in 

the development of distal neuropathies and peripheral vascular disease. The severity of these 

defects is a function of distance, which is why the distal extremity of the foot is the first and most 

affected.  

 

Diabetic distal neuropathy is manifested in autonomic, motor, and sensory deficits 

(Falanga 2005). Autonomic dysfunction leads to decreased sweat and sebum production resulting 
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in dry skin prone cracking, injury, and infection. Foot deformities may develop as a consequence 

of motor defects, creating bony protuberances and other sites vulnerable to mechanical stress. 

Sensory deficits exacerbate the situation, by increasing the risk of injury due to repetitive or acute 

trauma. More importantly, diabetics with distal neuropathy are often unaware their injury, thus 

foot ulcers continue to be exposed to trauma and infection before receiving any medical 

intervention. All of this is compounded by deficiencies in phagocytic activity, growth factor 

production, cellular migration, angiogenesis, and extracellular matrix accumulation, which 

impede effective wound healing (Brem & Tomic-Canic 2007).  

 

1.7 A Note on Terminology 

The study of the human microbiome is relatively new and its vocabulary is rapidly 

evolving and often ambiguous. The word microbiome is used generally to describe all microbes 

and their genomes inhabiting a niche, however, it is can also be used to describe the bacterial 

component specifically, with mycome and virome referring to the fungal and viral components 

respectively. For the remainder of the text, I will use distinguish between the bacterial, fungal, 

and viral components using these terms and adopt the convention of distinguishing between the 

actual cells, microbiota/mycobiota, and the collective genetic content, microbiome/mycome.  
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CHAPTER 2 – Temporal Stability In Chronic Wound Microbiota Is Associated 

With Poor Healing  

 

The contents of this chapter are accepted for publication as: 

Michael Loesche*, Sue E. Gardner*, Lindsay Kalan, Joseph Horwinski, Qi Zheng, 

Brendan P. Hodkinson, Amanda S. Tyldsley, Carrie L. Franciscus, Stephen L. Hillis, 

Samir Mehta, David J. Margolis, Elizabeth A. Grice. Temporal Stability In Chronic 

Wound Microbiota Is Associated With Poor Healing. J. Inv. Dermatol. (In Press)  

 

2.1 Abstract  

Microbial burden of chronic wounds is believed to play an important role in impaired 

healing and development of infection-related complications. However, clinical cultures have little 

predictive value of wound outcomes, and culture-independent studies have been limited by cross-

sectional design and small cohort size.  We systematically evaluated the temporal dynamics of the 

microbiota colonizing diabetic foot ulcers, a common and costly complication of diabetes, and its 

association with healing and clinical complications. Dirichlet multinomial mixture modeling, 

Markov chain analysis, and mixed-effect models were used to investigate shifts in the microbiota 

over time and its associations with healing. Here we show for the first time the temporal 

dynamics of the chronic wound microbiome. Microbiota community instability was associated 

with faster healing and improved outcomes. DFU microbiota were found to exist in one of four 

community types that experienced frequent and non-random transitions, which corresponded to 

the healing time. Exposure to systemic antibiotics destabilized the wound microbiota, rather than 

altering overall diversity or relative abundance of specific taxa. This study provides the first 
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evidence that the dynamic wound microbiome is indicative of clinical outcomes and may be a 

valuable guide for personalized management and treatment of chronic wounds. 

 

2.2 Introduction 

Chronic, non-healing wounds affect 6.5 million patients annually in the US and are an 

increasing public health and economic threat, exceeding estimated annual treatment costs of $9.7 

billion (Bickers et al. 2006). Chronic wounds almost always affect individuals with an underlying 

predisposition (e.g. obesity, advanced age, diabetes) and are often disguised as a comorbid 

condition. A major type of chronic wound is the diabetic foot ulcer (DFU), a common 

complication of diabetes that results from neuropathy coupled with mechanical stress and tissue 

breakdown. Those with diabetes have a 15-25% lifetime incidence of DFU (Valensi et al. 2005) 

and result in amputation in 15.6% of cases (Ramsey et al. 1999). Projections estimate that 

diabetes will continue to increase in prevalence (Guariguata et al. 2014); thus addressing 

management and treatment strategies for this complication is critical.  

 

Microbial bioburden is believed to contribute to impaired healing of chronic wounds and 

it is estimated that over 50% of DFUs are infected upon presentation (Prompers et al. 2007); 

however, infections are difficult to diagnose due to the diminished or absent clinical signs in 

DFUs (Glaudemans et al. 2015). Without clinical suspicion, wound cultures provide little 

diagnostic value, as bacteria colonize all open wounds. Our previous work demonstrated that 

clinical cultures underestimate bacterial diversity and load when compared to culture-independent 

techniques, based on the prokaryote-specific 16S ribosomal RNA (rRNA) gene. Multiple 

dimensions of the microbiota may be important, including microbial diversity, microbial load, 
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and abundance of potential pathogens (Gardner and Frantz 2008). Although other studies have 

used culture-independent methods to examine DFUs and other chronic wound microbiomes, these 

studies employed cross-sectional designs (Dowd et al. 2008; Price et al. 2009; Gontcharova 2010; 

Gardner et al. 2013; Wittebole et al. 2014; Wolcott et al. 2015) and the relationship between the 

wound microbiome and outcomes has not been rigorously examined.  

 

Microbial communities exhibit a wide range of stabilities across the human body (Ding 

and Schloss 2014; Flores et al. 2014); however, what these differing stabilities mean for the 

health of the community or the host remain poorly understood. Very little is known about the 

dynamics of the wound microbiota during healing, deterioration, or exposure to antibiotics. To 

date, no study has investigated the microbial dynamics of chronic wounds. These dynamics may 

contain information about the vulnerability of the wound to opportunistic infections or provide 

insight as to the origin of stalled wound healing. It is critical to study these dynamics to enhance 

our understanding of chronic wounds and improve our ability to effectively treat them.  

 

We address several important limitations of previous studies by performing a study 

designed to capture the longitudinal dynamics of microbiota colonizing DFUs and examining the 

association between the DFU microbiome and clinical outcomes.  Microbiota were sampled from 

DFUs every two weeks for 26 weeks or until healed. We employed high throughput sequencing 

of the 16S rRNA gene to define multiple metrics of the microbiome, including diversity, stability, 

and relative abundance of potential pathogens and identified microbiomic features associated 

with DFU clinical outcomes. Though our study was focused on the microbiota in DFU, many of 

these findings may be true of other chronic wounds and should be considered in future studies 

and treatments of chronic wounds. 
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2.3 Results 

We enrolled 100 subjects into a prospective, longitudinal cohort study to analyze 

temporal dynamics of DFU microbiota and association with outcomes using culture-independent 

approaches. DFU microbiota was collected at initial presentation (baseline) and resampled every 

two weeks until: 1) DFU healed; 2) lower extremity amputation; or 3) the conclusion of 26 weeks 

of follow up. All subject received standardized treatment of surgical debridement and offloading. 

Of the 100 enrolled subjects, 31 experienced an infection-related complication, defined as: 1) 

amputation; 2) wound deterioration, or 3) development of osteomyelitis. Table S1 summarizes 

clinical factors by complication status. 

 

2.3.1 Characterization of the DFU microbiota at baseline  

DFU microbiomes were determined by sequencing of hypervariable regions V1 through 

V3 of the 16S ribosomal RNA (rRNA) gene. The most abundant genus identified was 

Staphylococcus, present in 345 of the 349 samples, with an average relative abundance of 

22.77%. The second, third, and fourth most abundant genera were Streptococcus (11.98%; 318 of 

349 samples), Corynebacterium (11.46%; 346 of 349 samples), and Anaerococcus (7%; 300 of 

349 samples), respectively. All other genera represented <5% of bacterial relative abundance in 

this dataset. A more detailed characterization can be found in Table S2. We further classified 

Staphylococcus operational taxonomic units (OTUs) to species level for 79.5% of the OTUs. Of 

the 22.77% attributed to Staphylococcus, 13.3% was classified as S. aureus, 5.3% was S. 

pettenkoferi, and 4% was not further classified. While S. aureus is a common DFU isolate, the 

high abundance of S. pettenkoferi was surprising as this species was only recently characterized 
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in 2007 (Trülzsch et al. 2007), though it was identified as the cause of osteomyelitis in patient 

with a chronic DFU in France (Loïez et al. 2007).  

 

2.3.2 DFU microbiota can be partitioned into four community types  

We assigned DFUs to community types with the Dirichlet multinomial mixture (DMM) 

model-based approach (Holmes et al. 2012). The DMM model supposes a more biologically 

relevant distribution of data, which overcomes limitations of alternative methods such as k-means 

(Holmes et al. 2012) and PAM clustering (Ding and Schloss 2014). The DFU microbiomes were 

clustered into 4 groups, or Community Types (CT), by minimizing the Laplace approximation 

(Fig. S1). The top five differentiating taxa contributed 48.9% of the total difference between a 

one and four component model, though the major distinguishing taxa were Streptococcus (25.6%) 

and S. aureus (11.8%) (Fig. 1A). CT3 DFUs were characterized by high relative abundances of 

Streptococcus (median = 64.0%). CT4 DFUs were comprised of relatively high levels of S. 

aureus (median=23.8%). CT1 and CT2 were highly heterogeneous with no dominant taxa 

contributing more than a median of 5% of total relative abundance. This was also reflected by 

Theta values, a measure of cluster variability with smaller values corresponding to highly variable 

communities, which were 3.7 and 6.9, for the CT1 and CT2 compared to 16.4 and 10.5 for CT3 

and CT4, respectively. Community type summaries are described in greater detail in 

Supplemental Table 3. 

 

To better visualize how CTs were associated with microbiota composition and clinical 

features, we generated a biplot depicting these relationships (Fig. 1B). As would be expected, the 

taxa vectors for Streptococcus and S. aureus are closely associated with the CT3 and CT4, 

respectively. Interestingly, the samples with the highest proportion of S. aureus are not included 
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in CT4, demonstrating the importance of the whole community in distinguishing clusters. 

Streptococcus was closely associated with HbA1C levels and anaerobe levels with ulcer depth. 

Serum C-reactive protein levels (CRP) and white blood cell counts (WBC), both measures of 

inflammation used to inform the diagnosis of infections, localized separately with CT4 and CT3, 

respectively. Subject outcomes also contributed to data separation, with amputation localizing 

with CT1 and CT2, and unhealed subjects localizing with CT4. 

 

2.3.3 The frequency of Community Type transitions in DFU are associated with 

clinical outcomes  

We next investigated the stability of the CTs by exploring the frequency and type of CT 

transitions. The DFU microbiota was highly dynamic with CT transitions occurring every 1.76 

study visits (approximately 3.52 weeks) on average (Fig. 2A). Transition frequencies were 

significantly associated with subject outcomes (healed = 1.60, unhealed = 2.04, amputation = 

3.08 study visits/CT-transition). We further subdivided healed subjects into those whose ulcers 

closed in <12 weeks and those closed in >12 weeks. Consistent with our analysis, the faster 

healing subjects experienced greater transition frequencies (<12 weeks = 1.45, >12 weeks 2.11 

study visits/CT-transition, Wilcoxon p-value = 0.011).  

 

We then questioned whether transition patterns between CTs were related to ulcer 

outcomes. By quantifying transitions between CTs we could represent the data as a Markov 

chain, with nodes representing CTs and edges representing transition frequencies by their weight 

(Fig. 2B). The transition patterns between those that healed in <12 weeks and those that healed in 

>12 weeks were significantly different (p-value < 0.0001). In those who healed in <12 weeks, 

CT1 and CT2 dominated the transitions and were noted to have high self-transition rates of 0.74 
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and 0.53, respectively. In contrast CT3 and CT4 experienced lower self-transition rates of 0.23 

and 0.29, and had a predilection for transitioning to CT2. For subjects that took >12 weeks to 

heal, there is a marked increase in self-transitions, with ulcers stalling in CT3 and CT4 at rates of 

0.45 and 0.84, respectively, indicating that the stability of these CTs may be detrimental to wound 

healing. Analysis of the stationary distribution and expected recurrence time revealed similar 

trends (Table S4). The presence or absence of transitions between CT3 and CT4 also 

differentiated the two groups, with no recorded instances in wounds healing in <12 weeks. 

Together these findings suggest that community stability reflects a delayed healing phenotype. 

  

2.3.4 DFU with more dynamic microbiota heal faster than those with less 

dynamic microbiota  

To address more subtle patterns of variation, which may not be apparent when examining 

broad community types, we used the inter-visit weighted UniFrac (WUF) distance as a proxy of 

stability. The weighted UniFrac metric measures the proportion of shared OTUs, their 

phylogenetic relationships, and their relative distributions on a scale of 0 to 1, with higher values 

indicating greater instability. We generated mixed-effect linear regressions to model the 

relationship between microbiota instability and time required to heal in those that healed within 

24 weeks. This model suggests that all ulcers are slowly stabilizing at a rate of -0.024/visit; 

however, slow healing ulcers begin in a more stable state (-0.036 per visit required to heal) (Fig. 

3A). Because mixed-effect models do not allow generation of a traditional R2 value, we 

calculated marginal and conditional pseudo-R2 values, which reveals an estimate of the variance 

due to the fixed effects alone and the combined model of fixed and random effects respectively. 

The marginal R2 was estimated to be 0.201 and the conditional to be 0.280, indicating that our 

model explains a moderate amount of the variation.  
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 The first inter-visit distance, between the baseline study visit and following visit, includes 

the effect of the initial surgical debridement. Thus it was possible that the high instability in faster 

healing wounds was an artifact of the first study visit being weighted more. To address this 

concern, we investigated the relationship between healing time and the amount of change 

between baseline and the following visit (2 weeks’ time) using a traditional linear model. We 

found the same negative association between healing time and the inter-visit distance (R2 = 0.16, 

p<0.0001) (Fig. 3B), suggesting the effect is independent of debridement. 

 

2.3.5 Effect of antibiotics on temporal stability in DFU microbiota  

During the course of the study, 32 subjects required the administration of antibiotics, 

which afforded us the opportunity to glean the effects of antibiotics on ulcer microbiomes. 

Antibiotic exposure did not drive microbiota variation in our samples (Fig 1B). Furthermore, we 

did not detect any significant changes in community diversity as measured by the Shannon index 

or OTU richness, perhaps due to unique interactions between specific antibiotic classes and 

personal microbial communities. We assessed the potential for antibiotics to disrupt microbial 

communities using the inter-visit WUF distances as before and by binning antibiotics into distinct 

categories based on their class and mechanism of action. We did not detect significant differences 

in microbial stability due to antibiotic class. However, in half of the cases, the antibiotics were 

prescribed to treat infections not involving the studied ulcer (e.g. other ulcers, urinary tract 

infection, upper respiratory infection, sinus infection). When we examined the subjects treated 

specifically for the study ulcer, we found that antibiotics administered produced significantly 

higher community disruption than if the antibiotic was given for a different indication (Fig. 4A).  
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 In some cases, during the same time period that antibiotics were administered, the ulcer 

was designated as having a complication (wound deterioration or osteomyelitis). We modeled 

how these complications interacted with the antibiotics using mixed-effect linear regressions as 

before (Fig. 4B). We found that both complications and antibiotics contributed to community 

disruption, though the larger effect was noted for antibiotics (WUF = 0.084 and 0.140 

respectively). Furthermore, targeted antibiotics and complications had an additive effect on the 

amount of community disruption (WUF = 0.201). 

 

2.4 Discussion 

 Ours is the first study to explore the temporal dynamics of the human chronic wound 

microbiota. Microbiome studies in other body sites have shown that disease states are associated 

with less stability (Martinez et al. 2008; Jenq et al. 2012; DiGiulio et al. 2015). Surprisingly, 

DFUs that experienced delayed healing or resulted in amputation were associated with increased 

stability, while the inverse was true for faster healing wounds. One way of interpreting these 

findings is to conclude that there is no “normal” DFU community. A wound is by definition an 

abnormal and transient state in physiology. As such, colonizing bacteria should be considered 

opportunistic and unlikely to have evolved harmonious methods of existing with the host. From 

this perspective, instability in the microbiome is a reflection of effective control of wound 

bacteria, which prevents any community structure from stabilizing. In contrast, a DFU with a 

stable outgrowth of certain bacteria reflects a stalled healing state where the colonizing bacteria 

have overridden the host’s defenses.  

 

We found that the DFU microbiome can be partitioned into 4 community types. Increased 

community type transitions were associated with improved healing rates; however, these 
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community type transitions were not random. In quickly healing ulcers, CT1 and CT2 were 

substantially more likely to remain unchanged, whereas CT3 and CT4 were more likely to 

transition to CT2. In slow or unhealing wounds, we found that CT3 and CT4 became much more 

resilient. These findings suggest that the prognostic capacity of transition frequencies would be 

augmented by information of community structure. Further studies are needed to delineate cause 

and effect relationships of the microbiota with the wound environment. 

 

 Despite the regular use of antibiotics to treat infections, little is known about their impact 

on microbial communities in chronic wounds. We did not detect any differences in community 

diversity or composition due to antibiotic exposure, unlike the gut where exposure to certain 

antibiotics is known to decrease diversity levels, predisposing to infection by Clostridium difficile 

(Dethlefsen and Relman 2011; Stein et al. 2013). Instead, as in other body sites (Keeney et al. 

2014; Modi et al. 2014; Zhang et al. 2014; Mayer et al. 2015), antibiotics disrupted the 

microbiota. The extent of community disruption was not dependent on the class of antibiotic; 

rather it was whether the antibiotic was targeted towards the ulcer being studied. However, our 

analysis is limited by the biweekly sampling frequency, limiting the detection of short-lived 

changes.  

 

 In some reports, over half of DFUs are infected at the time of presentation (Prompers et 

al. 2007); however, identifying reliable criteria to diagnose an infection is complicated by the 

attenuated response to infections in diabetic persons (Brem and Tomic-Canic 2007). While our 

results would benefit from validation in larger cohorts, and their applicability to other types of 

chronic wounds needs to be tested, we provide evidence that the temporal dynamics of the wound 

microbiome may be useful for identifying stalled wounds requiring antibiotic treatment. We 
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envision that these findings will ultimately guide clinicians in the management of chronic wounds 

in a personalized manner. 

 

2.5 Materials and Methods 

2.5.1 Study Design 

A prospective, longitudinal cohort design was used to examine DFU microbiota 

and outcomes in 100 subjects. DFU microbiota was collected at initial presentation 

(baseline) and resampled every two weeks until: 1) DFU healed; 2) lower extremity 

amputation; or 3) the conclusion of 26 weeks of follow up. The Institutional Review 

Boards at the University of Iowa and the University of Pennsylvania approved all study 

procedures.  

 

2.5.2 Setting and Sample 

Subjects were enrolled from September 2008 through October 2012 at the University of 

Iowa Hospitals and Clinics (UIHC) and the Iowa City Veteran’s Affairs Medical Center (VA). 

Subjects were recruited through local media advertisements and from outpatient clinics at UIHC 

and the VA. The target population was diabetic adults (i.e., 18 years of age or older) with a DFU 

on the plantar surface of the foot. Individuals meeting these criteria were enrolled after providing 

informed written consent.   

 

We standardized the management of the study DFUs after enrollment, including ulcer 

dressings (i.e., Lyofoam®, Molnlycke Health Care), devices used for offloading (i.e., total 

contact casts were used for 87 subjects; DH boots for 13 subjects), and ulcer debridement (i.e., 
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aggressive sharp debridement of necrotic tissue in the wound bed was completed at baseline and 

callus on the wound edge was removed every two weeks), in order to minimize the number of 

factors unrelated to ulcer bioburden that could impact DFU outcomes.  DFU management did not 

include antimicrobial dressings, topical antimicrobials, and/or systemic antibiotics, unless an 

infection-related complication was present at enrollment or occurred during follow-up. Baseline 

data were collected immediately after enrollment.  Study data were collected every two weeks 

until one of the study endpoints was reached. 

 

2.5.3 Study Variables 

Clinical factors: The research team measured a set of clinical factors in order to identify 

pertinent co-variates for the analyses and to comprehensively describe the study sample. At 

baseline, demographic data, diabetes type and duration, and duration of study ulcer were collected 

using subject self-report and medical records.  Standard laboratory tests were used to measure 

baseline glycemic control  (haemoglobin A1c levels), as well as immune (White blood cell count) 

and inflammatory markers (C reactive protein). The research team assessed each subject for 

ischemia using toe-brachial index and for neuropathy using 5.07 Semmes-Weinstein 

monofilament. Transcutaneous oxygen pressure was measured at baseline and at each follow-up 

visit, using a transcutaneous oxygen monitor (Novametrix 840®, Novametrix Medical Systems 

Inc.). Ulcer location was categorized as forefoot, midfoot, or heel.  

 

Microbiome: Ulcer specimens were collected using the Levine technique. After cleansing 

with non-bacteriostatic saline, an Amies swab (Copan, Italy) was rotated over a 1-cm2 area of 

viable wound tissue in the center of the wound bed for five seconds, using sufficient pressure to 

extract wound-tissue fluid, DNA was isolated from swab specimens as previously described 
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(Gardner et al. 2013). Amplification of the 16S V1-V3 region was performed as described 

previously (Meisel et al. 2016), using the Illumina MiSeq platform with 300 bp paired-end ‘V3’ 

chemistry. This resulted in a dataset of 7,702,607 high quality, classifiable sequences used in the 

final analysis, with a mean of 22,070 (range 1,206-69,167) sequences per sample.16S rRNA 

sequence pre-processing followed methods described previously (Meisel et al. 2016), modified by 

performing denovo OTU clustering via UCLUST, assigning taxonomy with BLAST, and 

subsampling at 1200 sequences per sample. Sequences corresponding to the taxa “Geobacillus”, 

“Bacillus”, and “Lactococcus” were removed as these were identified as contaminants in the 

negative controls. QIIME 1.9.0 (Caporaso et al. 2010) was used for initial stages of sequence 

analysis. Sequences were clustered into OTUs (operational taxonomic units, a proxy for 

‘species’) using UCLUST(Edgar 2010) at 97% sequence similarity. Microbial diversity was 

calculated using the following alpha diversity indices: 1) Shannon diversity index; 2) Faith’s 

phylogenetic distance (PD); and 3) number of observed OTUs. Taxonomic classification of 

sequences were made using BLAST, as implemented in QIIME. 

 

Outcomes: Members of the research team, who were blinded to the microbiota status, 

assessed healing and infection-related complications every two weeks. Ulcer closure was assessed 

using the Wound Healing Society’s definition of “an acceptably healed wound,” a valid and 

reliable definition (Margolis et al. 1996). The outcome “healed by 12 weeks” was defined as 

wound closure before or at 12 weeks of follow-up. “Development of infection-related 

complications” was defined as wound deterioration, new osteomyelitis, and/or amputations due to 

DFU infections.  
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Wound deterioration was defined as the new development of frank erythema and heat, and an 

increase in size > 50% over baseline. Two members of the research team independently assessed 

each DFU for erythema and heat. Two members of the research team independently assessed size 

using the VeVMD® digital software system (Vista Medical, Winnipeg, Manitoba, Canada), which 

was loaded on a Dell Latitude D630 laptop computer (Dell, Round Rock, Texas). Digital images 

were taken that contained the ulcer, a 3x3 square-centimeter image orientation card, and a single-

point wound-depth indicator (i.e. A cotton-tipped swab that had been placed in the deepest aspect 

of the DFU and marked where the swab intersected with the plane of the peri-wound skin) and 

uploaded into the VeVMD program.  VevMD tools were used to trace the ulcer outline and a line 

along the wound depth indicator to generate measures of depth and surface area.  

 

Osteomyelitis was assessed using radiographs and MRI at baseline and during follow-up 

visits when subjects presented with new tracts to bone, wound deterioration, elevated 

temperature, elevated white count, elevated erythrocyte sedimentation rate, or elevated C-reactive 

protein. If these indicators were absent at follow-up, radiographs were not retaken. Subjects 

experiencing lower limb amputations had their medical records reviewed by the research team to 

ensure amputations were due to DFU infection, and not some other reason. 

 

2.5.4 Data Analyses 

The R Statistical Package ({R Core Team} 2016) was used for all computations. Non-

parametric Wilcoxon rank-sum tests were used to compare differences between groups. Spearman 

correlations were used to correlate continuous variables. Kruskal-Wallis tests, followed by 

Wilcoxon rank sum post-hoc tests, were used for categorical variables. Linear models were 

calculated in base R; mixed-effect regressions were generated using the NLME package(Pinheiro 
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et al. 2007). Partial and conditional pseudo-R2 values were calculated using the piecewiseSEM 

package (Lefcheck 2015). Sample biplot was generated using the Breadcrumbs package as done 

in (Morgan et al. 2015). Differences in Markov chain transition frequencies were tested with a 

Fisher’s test and simulated p-value. Dirichlet multinomial mixture modeling was performed using 

the R package Dirichlet Multinomial (v1.10.0). Counts were calculated at the highest level of 

taxonomic classification. The number of community types was determined by selecting the 

number of Dirichlet components that minimized the Laplace approximation of the model 

evidence (Holmes et al. 2012). Each sample was assigned to the community type that had the 

largest posterior probability. Inter-visit distances were calculated using the weighted UniFrac 

distance between consecutive visits. If visits were discontinuous (i.e. missing sample) no 

distances were reported. 
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3.8 Figures 

 

Figure 1 

The DFU microbiome clusters into four Community Types. (A) DFU samples partitioned into 

four clusters by Dirichlet multinomial mixture model. Mean relative abundances of bacterial taxa 

in DFU samples assigned to each Community Type. Relative abundance is shown on the Y-axis. 

Taxa are filtered to those with a mean abundance greater than 1%. (B) Sample similarity between 

DFU microbial communities were calculated using the Bray-Curtis distance and these distances 

were ordinated via non-metric multidimensional scaling. Each taxonomic contribution to 

community differentiation is overlaid with black text and “x” indicating the exact location. The 

impacts of various metadata are depicted as vectors labeled with gray text. Samples, taxa, and 

metadata that are closer together are more related. Samples are color-coded based on community 

type. 
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Figure 2.  

DFU Community Types are dynamic. (A) Per patient illustration of Community Type switching 

grouped by outcome. Depicted on the X-axis is visit number. Each row on the Y-axis represents a 

subject with a DFU. Colored boxes illustrate which Community Type was colonizing the DFU at 

the indicated visit number. Empty tiles represent a missed visit, whereas gray tiles indicate that a 

sample was not collected or available for analysis at that time point. The black diamonds indicate 

that the patient received antibiotics since the last visit. Only subjects that participated in >1 study 

visit are shown. (B) Markov chain visualization depicting the differential transition probabilities 

between community types of DFUs that healed in 12 weeks or did not. Each node represents a 

Community Type, arrows indicate the transition direction and probability (thickness), node-size 

represents number of samples. Annotated are the self-transition probabilities.  
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Figure 3 

Inter-visit Weighted UniFrac distances associations with healing time for subjects that healed 

within 24 weeks. (A) Inter-visit distances are shown for each subject and depict a negative trend 

over time. Line and point colors represent the number of study visits that the ulcer persisted (red 

= 1, green = 8). Ulcers stabilize at a rate of -0.024/visit, but start at a lower rate in those ulcers 

that require more time to heal (-0.036 per visit required to heal). (B) Inter-visit distances between 
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baseline and first study visit as a function of number of visits until healing. A negative correlation 

is found even within this initial comparison (R2 = 0.1601, p<0.0001).  
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Figure 4 

Effects of antibiotics on microbial communities in DFUs. (A) Boxplot showing the inter-visit 

Weighted UniFrac distances of subjects during exposure to antibiotics split by indication. 

Antibiotics given for the ulcer being studied produces greater community disruption than 

antibiotics given for other ulcers or other infections. Antibiotic class did not yield more 

information. (B) Boxplot showing the inter-visit distances of all samples binned by event type 
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(complication, antibiotics, both, or none). Antibiotics and ulcer complications both disrupt the 

microbiota, and their combined effect is additive. 



www.manaraa.com

44 

 

 

Figure S1 

Laplace approximation predicts 4 clusters as optimal. The Laplace approximation of model 

evidence is a measure of the model fit. Lower values indicate better fits.  
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3.9 Tables 

 

Table S1 

Patient and ulcer characteristics for the total sample and by complication status. 

‡ continuous level characteristics were analyzed with an independent samples t-test; 

Dichotomous characteristics were analyzed with Fisher’s Exact Test; Other categorical 

characteristics were analyzed with Pearson’s Chi-Square. An asterisk (*) indicates p<0.05. 

  

Total Sample Did not develop infection-
related complication

Developed infection-
related complication

(N=100) (n=69) (n=31)
Age (years), mean (SD) 54.1 (11.29) 55.4 (12.53) 52.3 (7.65) 0.136
Male sex, n (%) 78 (78.0) 56 (81.2) 22 (71.0) 0.3
White race, n (%) 91 (91.0) 62 (89.9) 20 (93.5) 0.498
Type 2 diabetes, n (%) 87 (87.0) 60 (87.0) 27 (87.1) 1
Duration of diabetes (years), mean (SD) 15.2 (11.31) 16.2 (11.55) 12.7 (10.55) 0.147
Baseline HbA1C (%), mean (SD) 8.2 (1.87) 8.32 (1.96) 8.0 (1.67) 0.461
Baseline WBC (mm3), mean (SD) 7950.5 (1905.97) 7751.5 (1916.58) 8387.1 (1837.52) 0.121
C Reactive Protein (mg/L), mean (SD) 2.2 (4.78) 1.7 (3.04) 3.2 (7.25) 0.284
Ulcer duration (weeks), mean (SD) 31.1 (40.22) 33.5 (42.46) 25.90 (34.81) 0.352
Toe/brachial pressure index, mean (SD) 0.9 (0.25) 0.9 (0.27) 0.9 (0.22) 0.803
Ulcer surface area (cm2), mean (SD) 2.4 (3.32) 2.0 (3.01) 3.3 (3.84) 0.101
Ulcer depth (cm), mean (SD) 0.3 (0.33) 0.2 (0.27) 0.4 (0.39) 0.002*
Ulcer location, n (%)
          Forefoot 73 (73.0) 50 (72.5) 23 (74.2)
          Midfoot 20 (20.0) 13 (18.8) 7 (22.6)
          Heel 7 (7.0) 6 (8.7) 1 (3.2)
Transcutaneous oxygen level (mmHg), mean (SD) 46.9 (15.11) 49.1 (13.80) 42.2 (17.00) 0.057

0.585

Characteristic ‡p-value
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      Combined (n = 348)   Baseline (n = 89)   Rest (n = 259) 

  

  

Samples Proportion 

 

Samples Proportion 

 

Samples Proportion 

Bacterial Taxon 

       

  

  Staphylococcus 345 0.2277 

 

86 0.2188049 

 

259 0.2317 

  

 

aureus 308 0.1331 

 

79 0.1559 

 

229 0.1257 

  

 

pettenkoferi 287 0.0532 

 

60 0.0290 

 

227 0.0617 

  

 

unclassified 301 0.0402 

 

69 0.0308 

 

232 0.0435 

  Streptococcus 318 0.1250 

 

81 0.1918 

 

236 0.1025 

  

 

anginosus 51 0.0052 

 

9 0.0008 

 

42 0.0067 

  

 

unclassified 317 0.1198 

 

81 0.1910 

 

235 0.0958 

  Corynebacterium 345 0.1121 

 

86 0.0761 

 

258 0.1249 

  Anaerococcus 300 0.0700 

 

78 0.0745 

 

222 0.0688 

  Planococcaceae 221 0.0401 

 

58 0.0457 

 

162 0.0383 

  Alcaligenaceae 194 0.0379 

 

40 0.0020 

 

153 0.0502 

  Paenibacillus 293 0.0364 

 

79 0.0429 

 

214 0.0342 

  Brevibacterium 222 0.0325 

 

44 0.0070 

 

177 0.0414 

  Comamonadaceae 321 0.0193 

 

84 0.0227 

 

236 0.0178 

  Finegoldia 245 0.0151 

 

64 0.0111 

 

181 0.0165 

  Helcococcus 207 0.0125 

 

46 0.0144 

 

160 0.0119 

  Pseudomonas 110 0.0109 

 

20 0.0014 

 

90 0.0142 

  Actinomycetales 151 0.0103 

 

33 0.0048 

 

118 0.0123 

 

Table S2  

Summary of microbial communities in DFU samples. For each bacterial taxon, the number of 

samples in which it was present was tabulated, and the mean relative abundance was calculated. 

These values were calculated for all samples, baseline only, and non-baseline samples. Taxa were 

filtered to those whose mean abundance was greater than 0.01. 
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    CT 1   CT 2   CT 3   CT 4 

Streptococcus 0.0466 

 

0.0528 

 

0.6175 

 

0.0275 

  anginosus 0.0048 

 

0.0083 

 

0.0032 

 

0.0000 

  unclassified 0.0418 

 

0.0445 

 

0.6143 

 

0.0275 

Staphylococcus 0.2759 

 

0.1710 

 

0.0975 

 

0.3688 

  aureus 0.1205 

 

0.1012 

 

0.0918 

 

0.3479 

  pettenkoferi 0.0880 

 

0.0374 

 

0.0026 

 

0.0152 

  sciuri 0.0025 

 

0.0001 

 

0.0000 

 

0.0000 

  haemolyticus 0.0001 

 

0.0004 

 

0.0001 

 

0.0000 

  unclassified 0.0649 

 

0.0320 

 

0.0030 

 

0.0057 

Corynebacterium 0.1586 

 

0.0885 

 

0.0269 

 

0.1191 

  simulans 0.0024 

 

0.0042 

 

0.0010 

 

0.0001 

  stationis 0.0000 

 

0.0000 

 

0.0000 

 

0.0000 

  unclassified 0.1563 

 

0.0843 

 

0.0259 

 

0.1190 

Anaerococcus 0.0370 

 

0.0884 

 

0.0623 

 

0.1759 

Planococcaceae 0.0539 

 

0.0345 

 

0.0050 

 

0.0442 

Brevibacterium 0.0385 

 

0.0346 

 

0.0016 

 

0.0419 

Paenibacillus 0.0582 

 

0.0233 

 

0.0058 

 

0.0206 

Alcaligenaceae 0.0479 

 

0.0495 

 

0.0061 

 

0.0008 

Helcococcus 0.0079 

 

0.0114 

 

0.0079 

 

0.0440 

Finegoldia 0.0114 

 

0.0197 

 

0.0095 

 

0.0254 

Comamonadaceae 0.0245 

 

0.0246 

 

0.0020 

 

0.0009 

Peptoniphilus 0.0054 

 

0.0134 

 

0.0095 

 

0.0204 

Actinomycetales 0.0056 

 

0.0185 

 

0.0076 

 

0.0106 

Porphyromonas 0.0023 

 

0.0141 

 

0.0123 

 

0.0107 

Prevotella 0.0101   0.0032   0.0135   0.0026 

 

Table S3 

Summaries of taxonomic composition by community type. The values shown are the mean 

relative abundance for each community type. Only the top 25 taxa are shown. Species belonging 

to the same genera are combined for convenience. 
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Stationary Distribution Expected Recurrence Time (weeks) 

<12 weeks >12 weeks <12 weeks >12 weeks 

CT1 0.546 0.433 3.66 4.62 

CT2 0.324 0.2012 6.17 9.94 

CT3 0.0343 0.1341 58.28 14.91 

CT4 0.0958 0.2317 20.89 8.63 

 

Table S4  

Estimated Markov chain parameters of DFU CT transitions. The values shown are 1) the 

stationary distribution, which describes the expected frequencies of CTs to be for a Markov chain, 

and 2) the expected recurrence time, which estimates the average time it would take to encounter 

the same CT again. Both show marked changes in the stability and frequency of CT3 and CT4 

between DFUs that heal within 12 weeks and those that do not. 
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CHAPTER 3 – Redefining the Chronic Wound Microbiome: Fungal Communities 

Are Prevalent, Dynamic, and Associated with Delayed Healing 

 

3.1 Contributions 

The following chapter focuses on a project related to Chapter 2 that I contributed to intellectually 

and analytically. Specifically, I assisted in the statistical analyses and generation of figures 1, 4, 

S5, and S6. 

 

The contents of this chapter have been accepted for publication as: 

Lindsay Kalan, Michael Loesche, Brendan P. Hodkinson, Kristopher Heilmann, Gordon 

Ruthel, Sue E. Gardner and Elizabeth A. Grice. 2016. Redefining the Chronic-Wound 

Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with 

Delayed Healing. mBio. [In Press]  

 

3.2 Abstract 

Chronic non-healing wounds have been heralded as a silent epidemic, causing significant 

morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial 

biofilms in the wound bed, are hypothesized to disrupt the highly coordinated and sequential 

events of cutaneous healing. Both culture-dependent and -independent studies of the chronic 

wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize 

are important fungal contributions to impaired healing and development of complication. Here we 

show for the first time that fungal communities (the mycobiome) in chronic wounds are 

predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial 
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biofilms. We longitudinally profiled 100, non-healing diabetic foot ulcers with high-throughput 

sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% 

of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized 

wounds. The ‘mycobiome’ was highly heterogeneous over time and between subjects. Fungal 

diversity increased with antibiotic administration and onset of a clinical complication. Proportions 

of the phlyum Ascomycota were significantly greater (p=0.015) at the study onset in wounds that 

took >8 weeks to heal.  Wound necrosis was distinctly associated with pathogenic fungal species, 

while taxa identified as allergenic filamentous fungi, were associated with low levels of systemic 

inflammation.  Directed culturing of wounds stably colonized by pathogens revealed that inter-

kingdom biofilms formed between yeast and co-isolated bacteria. Combined, our analyses 

provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic 

disease, and impact on clinical outcomes. 

 

3.3 Importance 

 Wounds are an under-appreciated but serious complication for a diverse spectrum of 

diseases. High-risk groups, such as persons with diabetes, have a 25% lifetime risk of developing 

a wound that can become chronic. The majority of microbiome research related to chronic 

wounds is focused on bacteria but the association of fungi with clinical outcomes remains to be 

elucidated. Here we describe the dynamic fungal communities in 100 patients with diabetic foot 

ulcers. We found that communities are unstable over time, but at the first clinical presentation, the 

relative proportions of different phyla predict healing times. Pathogenic fungi not identified by 

culture reside in necrotic wounds, and are associated with poor prognosis. In wounds stably 
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colonized by fungi, we identified yeast capable of forming biofilms in concert with bacteria. Our 

findings illuminate the associations of the fungal mycobiome with wound prognosis and healing.  

 

3.4 Introduction 

 In recent years, the implication of microorganisms in complex human processes has 

begun to come into focus. Negative consequences of these interactions can result in large health-

care burdens such as non-healing or chronic wounds (1-5). One example is diabetic foot ulcers 

(DFUs), which contribute to 80% of non-traumatic lower-extremity amputations and are 

associated with five-year mortality rates of 43-55%, higher than Hodgkin’s disease, breast cancer 

or prostate cancer(6-8). Chronic wounds are largely believed to be critically colonized by 

polymicrobial communities that contribute to persistent inflammation and stalled healing 

processes, significantly reducing the quality of life for those inflicted(9-11). The skin normally 

harbors diverse communities of microbes(12-17) that can contribute to health, but like other 

ecosystems, the niche can direct composition and ultimately function(18-20). In tissue injury, 

microbes enter the wound where the physical environment differs from the skin surface in 

temperature, pH, nutrient availability, and host immune effectors. Here, microbial metabolism 

can shift, providing opportunities for commensal microbes to become virulent and community 

compositions to fluctuate in response to host clinical factors(21-23). It is hypothesized that once 

colonization occurs these communities form a biofilm within the wound, disrupting the 

coordinated tissue regeneration process. This is also true in other chronic infections, such as 

cystic fibrosis (CF) where the environment of the CF lung allows for colonization(24), unlike the 

healthy lung from which microbes can be cleared . 
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Prior research has primarily focused on the role of bacterial species in wound healing(10, 

23, 25-30); however, the skin is also host to resident fungi and our environment is rich with 

fungal diversity(31-34). Many human commensal fungi or yeast are also opportunistic pathogens, 

and many species are known to be prolific biofilm formers(34-38). There are few studies 

describing the ‘mycobiome’ portion of the human microbiome and it’s relation to health(32, 34, 

39-41), while the incidence of fungal colonization in chronic wounds is even less known. A 

previous cross-sectional study of chronic wounds of mixed etiology and without standardized 

treatment utilized molecular-based methods to observe that up to 23% of chronic wounds contain 

fungi (41). Chellan et al. studied 518 diabetic lower leg wounds and detected fungi in 27% of 

samples with culture-based methodology(42). In these studies, several aspects of the cross-

sectional study design limit the ability to draw conclusions. These designs preclude longitudinal 

observation of fungal colonization, and the relationship to clinical outcomes (i.e. rate of healing, 

infection-related complication), while controlling for clinical variables such as tissue perfusion or 

blood glucose control.  

 

Here, we add a new perspective to the current models of impaired wound healing with a 

longitudinal study of 100 DFUs under standardized treatment. High-throughput sequencing of the 

nuclear ribosomal internal transcribed spacer 1 (ITS1) allowed us to define the dynamic diversity 

of the mycobiome, its stability in response to host factors, and the association of pathogenic fungi 

with poor clinical outcomes.   
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3.5 Results 

3.5.1 Study overview 

To minimize variability associated with wound etiology, we limited our study to a single 

wound etiology consisting solely of DFUs.  Subjects were enrolled into the study and wound 

specimens were obtained every two weeks until the wounds healed, another infection occurred, 

the wounds resulted in amputation, or were not closed after 26 weeks (Visit 0 -12). Table 1 

summarizes the cohort where a total of 384 specimens were collected from 100 DFUs in a sample 

of 100 subjects. Additional clinical factors measured include white blood cell count (WBC), 

ankle-brachial index (ABI), toe-brachial index (TBPI), hemoglobin A1c, glucose (HgbA1c), C 

Reactive Protein, and transcutaneous oxygen levels of the wound edge. Monofilament testing 

confirmed neuropathy in all subjects. Complications were experienced by 31 (31%) subjects 

defined as: 1) wound deterioration, 2) development of osteomyelitis, and/or 3) amputations. 

 

 The fungal component of DFU microbiomes was studied by sequencing the 

hypervariable internal transcribed spacer 1 (ITS1) region of the eukaryotic ribosomal RNA 

cistron using the Illumina MiSeq platform (2x300 PE chemistry). The ITS region has been 

formally recognized as the universal barcode for fungal identification(43) so we elected to use 

this region and the curated fungal barcode reference database UNITE(44) for operational 

taxonomic unit (OTU) assignment. We employed the PIPITS pipeline(45) because it extracts the 

ITS sub-region from raw reads and assigns taxonomy with a trained RDP Classifier(46). Of the 

10,673,363 sequences, 10,593,779 sequences were identified as containing an ITS1 subregion. 

DNA from Saccharomyces cerevisiae was detected in the medium in which the wound samples 

were collected, and therefore all OTUs identified at the genus or species level as Saccharomyces 

were filtered from the data set, resulting in removal of 3 phylotypes. After quality filtering and 
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contaminant removal, 2,842,822 reads remained, resulting in 482 OTUs and taxonomic 

identification yielded 284 phylotypes.  

 

3.5.2 Characterization of the DFU Fungal Mycobiome 

Seventeen phylotypes were identified in >1% relative abundance across the entire dataset, 

all belonging to the phyla Ascomycota or Basidiomycota. The two most abundant taxa were 

Ascomycota corresponding to Cladosporidium herbarum (teleomorph Davidiella tassiania), 

present in 41% of the samples and 56% of subjects, followed by Candida albicans (22% of 

samples; 47% of subjects). Notably, 10 of the 17 most abundant taxa are Ascomycetes 

filamentous fungi found ubiquitously in the environment, while the most abundant 

Basidiomycota identified were opportunistic yeast pathogens Trichosporon and Rhodosporidium 

spp. (Table 2, Figure 1A).  

 

 Malassezia species are reported as a major component of the healthy skin 

mycobiome(32) and were detected in >0.05% abundance in 26 subjects in a total of 36 

specimens, but only seven specimens had >10% relative abundance of Malassezia species. This 

observation is not unexpected as Malassezia spp. are lipid dependent and the foot is known to 

have overall lower abundances of Malassezia spp. relative to other body site niches(32, 47), in 

part due to absence of sebum in this microenvironment and in the wound itself. 

 

A major current limitation of molecular DNA sequencing based analysis of the 

mycobiota is representation of fungal species in available reference databases. It is estimated that 

sequence data is available for a mere 1.5% of the estimated 1.5 million fungal species(46). 
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Indeed, 32% of the DFU samples contained OTUs that could not be assigned beyond the kingdom 

level and 16% of samples contained OTUs unclassified beyond phylum Ascomycota (Table 2).   

Limitations of reference databases necessitate the use of reference-independent analyses to 

characterize diversity and variation of fungal communities. Alpha diversity metrics use reference-

independent OTU data to summarize diversity, such as number of OTUs in a sample and their 

evenness. We analyzed DFU mycobiome alpha diversity with respect to wound health and 

inflammation factors measured at the patient- and ulcer-level (Supplementary Figure 1 and 

Supplementary Table 1). At baseline, diversity measured as the number of observed species-level 

OTUs (median=6; range=1-21) and Faith’s PD (median=4.64; range=1.31-14.92) was negatively 

associated with tissue oxygenation (rho=-0.258, p=0.046; rho=-0.295, p=0.022, respectively) 

(Supplementary Figure 1), suggesting that high fungal diversity is associated with poor perfusion.  

As measured by the Shannon Diversity Index, which takes into account both richness and 

evenness of OTUs, ulcers on the forefoot were more diverse (median=1.03; range=0-3.83) 

compared to hindfoot ulcers (median=0.51; range=0-1.65; Wilcoxon rank sum test; p=0.02) with 

midfoot ulcers falling in between (median=0.95; range=0-3.15) to create a gradient of diversity 

(Figure 1B). The number of observed species-level OTUs did not significantly differ between the 

forefoot and hindfoot indicating that evenness of differentially abundant OTUs contribute to 

topographical variability of the mycobiome. Decreased Shannon Diversity appears to be primarily 

driven by a significant increase in the relative abundance of C. albicans in ulcers formed on the 

hindfoot (Figure 1C; Supplementary Table 2).  

 

At each study visit, wound specimens were also collected for quantitative cultures. Three 

subjects were culture positive for yeast isolates categorized as “skin flora” or “other” and two 

subjects were positive for Candida sp. at one study visit. In all five cases, the study visit positive 
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for yeast culture was concurrent with or preceded the study visit of a complication 

(Supplementary Figure 2). With a culture-independent sequence-based approach, after quality and 

contaminant filtering, 275 of the 384 samples analyzed, corresponding to 79 subjects, were 

positive for at least one fungal phylotype (Table 1). The culture positive specimens were 

confirmed by ITS1 sequencing to contain high relative abundances of Candida spp (C. albicans, 

C. glabrata) with the exception of one subject specimen containing primarily Trichosporon 

asahii. Our analysis identified these same species and others in additional study visits 

(Supplementary Figure 2). For these subjects, we also compared the bacterial communities 

(obtained by 16S rRNA gene sequencing and reported in(48)) and discovered in some cases, such 

as subject 194 and 198 (visit 0), fungal identification resulted in the absence of bacterial taxa in 

the specimen. However, for the majority of wound specimens, mixed fungal-bacterial 

communities were observed (Supplementary Figures 2,3A). 

  

3.5.3 The DFU Mycobiome Has High Interpersonal and Intrapersonal Variation  

 A striking feature of DFU fungal community structures was the absence of a core 

mycobiome or shared taxa across the study cohort (Figure 1A). We assessed the temporal 

stability of fungal communities over time by calculating the weighted UniFrac distances (WUF) 

between study visits within a single subject. We compared this to mean interpersonal WUF 

distances at their baseline visit. Mean interpersonal WUF distances were significantly greater 

than mean intrapersonal WUF distances (Figure 1D), suggesting that interpersonal variability is 

greater than intrapersonal variability. However, a high level of dissimilarity occurred in both 

groups (mean = 0.71 vs 0.67, respectively; Wilcoxon rank sum test; p<0.0001). At the taxonomic 

level, community structure was ephemeral, with taxa sometimes appearing or disappearing within 

one study visit (Figure 2).   
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High rates of change between study visits suggest transient colonization or environmental 

contamination of the wound bed by fungi. Contrary to this hypothesis is the standardized care 

employed in this study, where a total contact cast (TCC) (n=87) or a DH Boot (n=13) was applied 

for offloading following wound cleansing and dressing. TCC results in creation of an occlusive 

environment for the entire foot, minimizing influence from the external environment. We 

examined the mycobiome community stability of ulcers offloaded with TCC and DH Boot, but 

did not observe significant differences between the two offloading methods (data not shown).  

 

3.5.4 The DFU Mycobiome is Associated with Clinical Outcomes  

We next determined if the DFU mycobiome was associated with clinical outcomes. An 

ideal biomarker would differentiate wound outcomes at initial patient presentation; therefore, we 

analyzed the mycobiomes of the baseline study visit (Visit 0) with respect to outcomes, in 

addition to analyses incorporating all longitudinal data. At the baseline study visit, Ascomycota 

were present in significantly greater relative abundance in wounds that healed in >8 weeks 

compared to those that healed in <4 weeks (Tukey post-hoc; p=0.017). This distribution was only 

significant at the initial presentation and did not significantly differ by healing time of all the later 

visits combined (Figure 3A). Baseline specimens were taken at the initial clinical presentation 

and before the wound was surgically debrided of dead tissue and/or biofilms, but the specimens 

were obtained over viable wound tissue, not necrotic tissue. This suggests that the mycobiome at 

the presentation visit can be predictive of time to heal.   

 

We also assessed stability of the mycobiome and its association with outcomes. Inter-

visit WUF was not associated with healing outcome; healed, unhealed or amputated wounds 
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display high levels of change over time that were not significantly influenced by a clinical 

complication or administration of an antibiotic (Figure 3B, C).  Although the mean WUF values 

were >0.5, indicating high rates of change, in some cases, a trend was observed in subjects that 

ultimately required an amputation, where the WUF values were lower, meaning mycobiomes 

from sequential visits were less dissimilar. This suggests a more stable colonization of the fungal 

community, and potentially implicates the formation of a biofilm or infection leading to 

subsequent chronicity. This is exemplified in the bottom panel of Figure 2 (subject 198) where 

the first three study visits of this particular subject were dominated by Trichosporon asahii 

followed by a shift to a predominant population of C. herbarum in the later visits. Conversely, the 

bacterial community stability in this subject is low during the first three visits, until the fungal 

community shifts and stability for both groups then follows the same general pattern. Similar 

trends are observed in other subjects and indicates that the stability of the fungal community 

structure is not independent from co-habitating bacterial community stability (Supplementary 

figure 3B).     

 

Antibiotics were administered to 31 of 100 subjects at some point during the course of 

the study. We hypothesized that antibiotic treatment would influence the fungal portion of the 

microbiome in response to observed bacterial perturbation and disruption (48). In subjects that 

received antibiotics, the Shannon diversity indices for all visits combined were significantly 

higher than those subjects who did not receive an antibiotic (Wilcoxon rank sum test; p=0.029). 

However, diversity over time did not significantly fluctuate before, during or after antibiotic 

administration. We also examined the class of antibiotic administered and discovered it was non-

discriminating in influencing the overall diversity metrics in these subjects (Supplementary 

Figure 4). In samples from study visits where a complication occurred, Shannon diversity was 
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also significantly higher (mean=0.98 vs 1.30; Wilcoxon rank sum test; p<0.001) but visits with 

complications only co-occurred with visits of antibiotic administration 45% of the time (41/91 

total visits).  

 

3.5.5 Pathogens versus allergens in the DFU mycobiome 

We elected to bin taxa into the categories “pathogens” or “allergens”, because with 

respect to the skin and cutaneous infection, the majority of taxa identified in our dataset fell into 

one of these two groups of either known/opportunistic skin pathogens or the filamentous fungi 

often identified as allergenic molds (Figure 4A). While some members of the “allergens” group, 

such as Aspergillus spp., can also be opportunistic pathogens, this is rare in the context of skin 

and cutaneous infection so we limited their classification. We first assessed associations between 

the list of allergen and pathogen phylotypes and the taxa listed in Table 2 using Spearman rank 

correlations. Taxa correlations were then subjected to hierarchical clustering via hclust. The 

allergens and pathogens clustered separately, discriminated by their associations with six key taxa 

(Aspergillus cibarius, Penicillium bialowiezense, Epicoccum nigrum, Pencillium sp., 

Trichopsoron asahii and Candida albicans). Allergens had positive associations with all six, 

whereas pathogens did not exhibit any strong associations, positive or negative. (Supplementary 

Figure 5).  

 

With respect to clinical outcomes, a trend emerged where the mean proportions of 

pathogens were higher in non-healing wounds and those that ultimately resulted in amputation, as 

compared to wounds that healed, though this trend was not statistically significant (Figure 4B). 

The mean proportion of allergens was unchanged across all outcome groups (data not shown).  
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We also examined mean relative abundance of allergens and pathogens with respect to necrosis, 

because the level of necrotic wound tissue may indicate wound health or deterioration. Strikingly, 

in wounds with 75-100% necrotic tissue the proportion of allergens is reduced and a highly 

significant increase in the proportions of pathogens is observed (p<0.001; analysis of variance 

and Tukey post-hoc analysis) (Figure 4C). To better visualize this distribution across samples, we 

constructed an independently calculated weighted UniFrac distance ordination plot overlaid with 

the relative proportion of allergens, pathogens and the level of necrotic tissue in each sample. 

Clear separation is observed between the two groups and pathogens are predominantly found in 

those samples with high levels of necrosis (Figure 4D).  

 

Since pathogens may directly contribute to wound necrosis and negative outcomes, the 

most severe being amputation, we further examined all possible associations between additional 

clinical factors and the relative abundance of pathogens and allergens, and the two dominant taxa 

in each of those groups (C. albicans and C. herbarum respectively). By Spearman rank 

correlation, allergens were negatively associated with HgbA1c levels (rho=-0.308, p=0.02) and 

WBC counts (rho=-0.346, p=0.009), suggesting that glucose control and lower levels of 

inflammation are consistent with allergen colonization (Supplementary Figure 1). Specifically, C. 

herbarum was negatively associated with HgbA1c (rho=-0.405, p=0.002) but positively 

associated with the ulcer surface area (rho=0.348, p=0.008) and days in the study (rho=0.279, 

p=0.038) (Supplementary Figure 1). Because the culture positive samples co-coincided with 

wound deterioration and the mean proportion of the group “pathogens” is elevated in non-healing 

wounds and necrosis, we looked for associations between both Candida spp. and the pathogens 

group to clinical factors but no additional significant associations were identified (Supplementary 

Figure 1).  
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3.5.6 The DFU Mycobiome Forms Multi-Species Biofilms with Bacteria 

 We hypothesized that biofilm formation occurred in those ulcers where a pathogenic 

fungal species was detected. Cultures were obtained from samples collected from subjects 145 

and 198, representing delayed (>6 weeks) but healed and amputated wounds, respectively (Figure 

2). C. albicans was isolated from subject 145 and T. asahii from subject 198. Samples from these 

subjects also grew the bacterial isolates Citrobacter freundii (subject 145) and Staphylococcus 

simulans (subject 198). The ability for each isolate to form a biofilm as mono-culture or co-

culture was assessed and confirmed visually by confocal microscopy. The yeast-bacteria pairs (C. 

albicans + C. freundii; T. asahii + S. simulans) readily grew as co-culture on agar plates. Biofilm 

growth was observed for mono-culture of each yeast strain with distinct hyphal growth of C. 

albicans and chains or clumping of cells for T. asahii. The bacterial strains were also able to grow 

as biofilms in mono-culture, forming distinct micro-colonies although in a more dispersed and 

confluent layer than the yeast mono-cultures (Figure 5). Mixed-species biofilms formed within 24 

hours and further matured over 48 hours. The co-cultures revealed close interactions between 

bacterial and yeast cells. The yeast appears to form the ‘core’ of the colony and bacteria associate 

around the periphery of the cells, coating yeast cells and hyphae as they grow out of the plate to 

approximately 30 µM thick for C. albicans + C. freundii and 15 µM thick for T. asahii and S. 

simulans after 48 hours (Figure 5). These observations coupled with quantitative counts of the 

planktonic and biofilm mono- or co-cultures (Supplementary Figure 7) suggest that the yeast and 

bacterial species interact in a non-competitive manner to form mixed biofilms.  

 

 To assess fungal-bacterial interactions with a more global view we determined Spearman 

rank-correlations between the fungal and bacterial taxa found in >1 % abundance in the entire 
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dataset. Corynebacterium sp. in the order Actinomycetales, was significantly negative correlated 

with C. albicans and C. parapsilosis.  Members of the Actinomycetales are historically rich 

sources of bioactive small molecules. On the other hand, C. albicans was significantly positively 

correlated with the order Alcaligenaceae, a group of Gram-negative Proteobacteria.  

 

3.6 Discussion 

 Chronic non-healing wounds are host to polymicrobial communities that can form 

biofilms and interfere with healing processes. Here we utilized high-throughput sequencing of the 

ribosomal RNA internal transcribed spacer ITS1 amplified from DFU specimens collected 

longitudinally to demonstrate that DFUs contain a diverse repertoire of fungi not recognized 

clinically or by traditional culture procedures. Our study is the first to identify fungi in a large 

proportion (80%) of DFUs surveyed. The longitudinal aspect of our study design and 

standardized care protocol establishes that the mycobiome is highly dynamic and transient in 

DFUs, with increased fungal diversity in subjects administered antibiotics or experiencing a 

complication. While the subset of subjects on antibiotics was not large enough to allow for 

detailed investigation into the short- and long-term effects on the mycobiome, future studies are 

warranted, incorporating both fungal and bacterial community dynamics in response to antibiotic 

perturbation.   

 

Studies of the mycobiome in chronic disease are not abundant. It was striking to us that 

C. herbarum was the most abundant species found in ≥1 sample from 56% of our subjects. 

Although this saprophytic dematiaceous fungus is widespread in the environment, it has been 

reported as one of the most common fungal species associated with the human body across 



www.manaraa.com

68 

 

different body sites including the oral, nasal, vaginal and gut mycobiomes(31, 34, 49-51). Not 

only are Cladosporium spp. sensitizing agents leading to allergic rhinitis, but they are linked to 

other human diseases including an outbreak of fungal meningitis in 2012(52), and recently 

Cladosporium spp. were identified in 92 clinical specimens with 28% of those coming from 

superficial and deep tissues(53). Together, these data indicate that Cladosporium spp. should be 

regarded as a member of the human mycobiome. 

 

Candida albicans was the second most abundant phylotype identified, present in 47 

subjects and 21% of samples. Other species identified were C. parasilopsis (15%), C. tropicalis 

(9.76%), C. glabrata (3.7%), and C. smithsonii (2.9%), while C. boleticola, C. dubliniensis, C. 

orthopsilosis, C. metapsilosis, and C. xylopsoci were found in less than 3% of the samples. 

Candida abundance can fluctuate during gut microbiome dysbiosis, for instance by antibiotic 

administration early in life, and has been associated with asthma and allergic airway response to 

fungal allergens(54-56). Specifically, overgrowth of Candida albicans in the gut microbiome of 

mice can provoke sensitization resulting in a CD4+ T-cell mediated response to mold spores that 

is not observed in mice without microbiota disruption(57). It is not clear if similar responses 

occur in other tissues and body sites, or if this response is isolated to the gut-airway axis. The 

DFU mycobiome is primarily composed of a balance of commensal and pathogenic yeasts 

(Candida spp, Trichosporon spp.) and a heterogeneous population of anamorphic fungi 

recognized as important causes of respiratory allergies(58). Instability in communities both inter- 

and intra-individually suggests transient or superficial colonization of the DFUs by spores, 

highlighting an important limitation to sequence based studies: the inability to determine active 

metabolism. In this context however, it is tempting to imagine a scenario by which exposure to 
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fungal spores and their antigens is sufficient to provoke an immunological response that 

contributes to prolonged inflammation and stalled healing.  

 

Poor perfusion is a hallmark of DFUs and can contribute to impaired healing. Increased 

fungal diversity in DFUs with reduced oxygenation is consistent with our finding that biofilm 

forming yeasts and opportunistic skin commensal pathogens were highly significantly and 

strongly associated with wound necrosis and poor outcomes. This association was not driven by a 

single species but a mixed group of pathogens.  

 

This study provides the foundation for further dissection of microbial interactions and 

their profound influence on disease progression. Here, we demonstrate the ability of DFU isolated 

yeast-bacterial pairs to form mixed biofilms. Two pairs were cultured from DFUs identified as 

having a stable community by our molecular analysis and used to validate fungi-bacteria biofilm 

formation. To our knowledge there is little information regarding interactions between C. 

albicans and C. freundii or T. asahii and S. simulans. Our in silico analysis also suggests that an 

antagonistic interaction is occurring between Candida sp. and Corynebacterium sp. Continued 

exploration to determine the magnitude and mechanisms of microbiome interactions in 

contributing to impaired healing and skin and soft tissue infection is an important and timely area 

of research. Observation of diverse fungal communities in chronic non-healing wounds and their 

ability to form inter-kingdom biofilms with both Gram-negative and Gram-positive bacterial 

species emphasizes the paramount importance but also complexity of studying whole microbial 

communities, their inter-species interactions and implications in chronic disease.  
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3.7 Materials and Methods 

3.7.1 Study Design 

 During September 2008 through October 2012 100 subjects were enrolled in a 

prospective-cohort to sample the DFU microbiota and measure outcomes. Subjects were recruited 

through local media advertisements and from outpatient clinics at the University of Iowa 

Hospitals and Clinics (UIHC) and the Iowa City Veteran’s Affairs Medical Center (VA). Samples 

for microbiota analyses were collected at initial presentation (V0) and every two weeks until the 

DFU: i) healed; ii) was amputated; or iii) 26 week of follow up elapsed (V1-12). The Institutional 

Review Boards at the University of Iowa (IRB#200706724) and the University of Pennsylvania 

approved the study procedures (IRB#815195). Informed consent was obtained from all 

participants in writing.  

 

 Wound management was standardized to aggressive sharp debridement of necrotic tissue 

in the wound bed at baseline and wound edge callus removal every two weeks followed by non-

antimicrobial dressing application (i.e., Lyofoam®, Molnlycke Health Care). Ulcers were 

offloaded with total contact casts (87 subjects) or DH boots (13 subjects). Topical antimicrobial 

or system antibiotic administration was not included unless an infection-related complication was 

present at baseline or occurred within the study period. Data was collected at baseline and 

longitudinally every two weeks until the wound healed or 26 weeks elapsed. 

 

3.7.2 Study Variables 

Clinical factors: Demographic variables were collected at the baseline visit including 

age, sex, diabetes type and duration and duration of the study ulcer using subject self-report and 

medical records. At each study visit glycemic control was measured by levels of haemoglobin 
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A1c and blood glucose. Inflammatory (Erythrocyte sedimentation rate (ESR), C-reactive protein) 

and immune (white blood cell counts) markers were determined with standard laboratory tests. 

Each subject was also assessed for ischemia using the ankle-brachial and toe-brachial index and 

for neuropathy using the 5.07 Semmes-Weinstein monofilament test. Transcutaneous oxygen 

pressure was measured at baseline and at each follow-up visit, using a transcutaneous oxygen 

monitor (Novametrix 840®, Novametrix Medical Systems Inc.). Ulcer location was categorized 

as forefoot, midfoot, or hindfoot.  The level of necrotic tissue was defined as black, grey or 

yellow tissue in the wound bed measured using a likert scale as the percentage of the total wound 

area binned according to 0-25%, 25-50%, 50-75% or 75-100% necrotic tissue.   

 

Outcomes: Healing and infection-related complications were assessed every two weeks. 

Ulcer closure was determined using the Wound Healing Society’s definition of “an acceptably 

healed wound,” a valid and reliable definition(59). “Development of infection-related 

complications” was defined as wound deterioration, new osteomyelitis, and/or amputations due to 

DFU infections.  

 

Wound deterioration was defined as the new development of frank erythema and heat, 

and an increase in size > 50% over baseline. Two members of the research team independently 

assessed each DFU for erythema and heat. Two members of the research team independently 

assessed size using the VeVMD® digital software system (Vista Medical, Winnipeg, Manitoba, 

Canada) and procedures previously described(60). A cotton-tipped swab, placed in the deepest 

aspect of the DFU, was marked where the swab intersected with the plane of the peri-wound skin. 

The distance between the tip of the swab and the mark was measured as ulcer depth using a 

centimeter ruler.    
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Osteomyelitis was assessed using radiographs and MRI at baseline and during follow-up 

visits when subjects presented with new tracts to bone, wound deterioration, elevated 

temperature, elevated white count, elevated erythrocyte sedimentation rate, or elevated C-reactive 

protein. If these indicators were absent at follow-up, radiographs were not retaken. Subjects 

experiencing new amputations had their medical records reviewed by the research team to ensure 

amputations were due to DFU infection, and not some other reason. 

 

 Sequencing of fungal ITS1 rRNA region: Ulcer specimens were collected using the 

Levine technique and established protocols(61). DNA was isolated from swab specimens as 

previously described(21). The ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS2R 

(GCTGCGTTCTTCATCGATGC) primers were used for PCR amplification, each having a 

linker sequence, a sample specific GoLay12 index, and an Illumina adapter to amplify the ITS1 

region of the fungal rRNA region. These indexed primers were used in combinations that made it 

possible to multiplex up to 576 (24 x 24) samples at a time. Each sample (along with one mock 

community, three buffer controls and two water controls) was amplified in duplicate, combined, 

and cleaned using the Agencourt AMPure XP bead-based PCR purification system (Beckman-

Coulter). PCR reactions contained 9.65 µL PCR-clean water, 1.25 µL 10X Accuprime Buffer II 

(Invitrogen), 0.1 µL Accuprime High Fidelity Taq (Invitrogen), 0.25 µL each of the forward and 

reverse primers (at 10 µM concentration), and 1.0 µL genomic DNA. Reactions were held at 

94°C for 3 min to denature the DNA, with amplification proceeding for 35 cycles at 94°C for 45 

s, 56°C for 60 s, and 72°C for 90 s; a final extension of 10 min at 72°C was performed. Purified 

amplicon pools were quantified using the Quant-IT dsDNA High-Sensitivity Assay Kit 

(Invitrogen) and a microplate reader (Thermo Scientific). A composite sample for sequencing 
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was made by combining equimolar ratios of amplicons from the samples, followed by gel 

purification with a Qiagen MinElute Gel Extraction Kit to remove potential contaminants and 

PCR artifacts (the acceptable size window for amplicons was 200-1000 bp in length). The pooled 

DNA was quantified using a Qubit Fluorometer (Life Technologies), and PhiX174 genomic DNA 

was spiked in to the sample at ~40% prior to sequencing. MiSeq 300 bp paired-end ‘V3’ 

sequencing was performed. Additional negative controls were processed as above, except the 

ITS1F and ITS2R primers were used without barcoded adapters and amplicons were sequenced 

by standard Sanger sequencing.  

 

The MiSeq ITS libraries were preprocessed using an in-house pipeline that includes read QC, 

barcode de-multiplexing, paired-end assembly and linker cleaning steps. The pipeline procedures 

are briefly explained below. 

1. Read QC. Raw read quality was checked for the average and range of the Phred quality 

scores along the reads (1~300 bp) for both forward and reverse reads independently. 

2. Read de-multiplexing. Our MiSeq ITS library construction protocol utilizes a customized 

barcode system with both forward & reverse barcodes embedded near the 5’ of both reads; 

thus, the forward and reverse barcodes are first spliced and concatenated from the 

corresponding reads, then read-pairs are de-multiplexed using the Flexbar program (v2.4)(62) 

with default settings. 

3. Paired-end assembly. De-multiplexed paired-end reads are assembled (merged) using the 

PEAR (v0.9.0) program(63) with default settings. 
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4. Barcode/linker cleaning. Our customized barcode/primer system incorporates a linker region 

between the actual barcodes and PCR primers to increase the heterogeneity of the amplicons 

for successful Illumina sequencing. These in-line barcode and linker sequences are cleaned 

from final assembled amplicons by in-house Perl scripts, in a way that is based only on the 

length of the barcodes/linkers, which guarantees a successful removal. 

The PIPITS pipeline was used for ITS1 processing(45). Briefly, the ITS1 region was 

extracted with ITSx(46), clustered into operational taxonomic unites (OTUs) with 

VSEARCH(https://github.com/torognes/vsearch) at 97% sequence similarity and chimera 

removal performed using the UNITE UCHIME reference data set. Representative sequences were 

assigned taxonomic classification with the RDP classifier against the UNITE fungal ITS 

reference data set(64) at a confidence threshold of 0.85. Contaminants found in negative controls 

(corresponding to taxa Saccharomyces cereviseae or Alternaria eichornia) were removed at the 

OTU level (4 OTU’s removed) followed by subsampling 500 sequences per sample. The Shannon 

diversity index, Simpson diversity index (1-D), Faith’s phylogenetic distance (PD) and number of 

observed species (richness) were calculated using the QIIME 1.8.0 alpha_diversity.py script(65). 

Beta-diversity metrics were calculated with the QIIME 1.8.0 beta_diversity.py script. 

 

3.7.3 Fungal and Bacterial Manipulation 

 Isolation: Yeast and bacterial isolates were grown from wound swabs collated in 

trypticase soy broth (TSB). Briefly, 100 µL of TSB containing the swab was plated onto yeast-

mold (YM; Neogen, Lansing, MI) and incubated at 25°C for up to 7 days. Individual colonies 

were picked and grown on YM or TSB agar plates to be made into glycerol stocks for long term 

storage.  All strains isolated were identified by amplification of the ITS1 region (primers 
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described above without adapters) or 16S rRNA gene (16S 27’F and 534’R) and Sanger 

sequencing. Secondary confirmation was obtained by MALDI TOF mass spectrometry at the 

Pennsylvania Animal Diagnostic Laboratory System.  

 

 The yeast isolate grown from P198 was identified as Trichosporon asahii by Sanger 

sequencing and a BLAST search against the NCBI nt database and UNITE database. The 

sequence was compared to the OTU identified as Trichosporon ovoides as part of the PIPITS 

pipeline and found to have 100% identity so the OTU was re-classified as T. asahii.  

 

 Biofilm growth: Isolates were grown overnight at 37°C on YM agar (fungi) or TSA 

(bacteria). Colonies were scraped into 0.89% NaCl to an OD600 nm of 0.08-0.1 with the exception 

of T. asahii (OD600nm =0.17-0.2). Bacterial suspensions were diluted 1/10 into RPMI 1649, 

GlutaMax media (ThermoFisher Scientific, Waltham, MA). The inoculums were then added in a 

1/10 dilution to a final volume of 4 mL RPMI in 35 mm polystyrene plates. Cultures were 

incubated stationary at 37°C for 24 or 48 hrs to allow adhesion and growth. The media was 

removed and the biofilms washed with 2 x 1 mL sterile 0.89% NaCl to remove non-adherent 

cells. The biofilms were stained with the LIVE BacLight Bacterial Gram Stain Kit (ThermoFisher 

Scientific, Waltham, MA) with SYTO9 (480nm/500nm) and hexidium iodide (480nm/625nm) as 

a 2 mL solution in water and according to the kit instructions. The stain was removed and 

deionized water was added to the biofilms prior to imaging on a Leica TCS SP5 microscope with 

20x objective. Images were post-processed with Volocity software (PerkinElmer, Waltham, MA, 

USA). The maximum projection for each image was used to generate figure 5.  
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Quantitative counts of mono and co-cultures were performed by serial dilution of 

planktonic cells (media), wash media (2 x 1mL) and 0.89% saline containing adherent cells that 

were scraped and resuspended (n=2). The dilutions were plated onto non-selective media (YM or 

TSA) and incubated for 16-18 hrs at 37°C. Colonies were counted and the total CFUs calculated. 

 

3.7.4 Data Analyses 

The R Statistical Package (66) was used for all computations unless described elsewhere. The 

classification of ‘Pathogens’ or ‘Allergens’ was performed manually based on classification in 

literature. Statistical methods are described within the text and figure legends. Correlations 

between microbiome and clinical features were determined by calculating the Spearman 

coefficient.  

 

3.8 Data Availability 

All sequence data is publicly available on the NCBI Sequence Read Archive with accession 

number SRP076355 and BioProject Accession number PRJNA324668. 
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3.11 Figures 

 

Figure 1 

The DFU mycobiome is diverse and highly heterogeneous. A) Heatmap of fungal community 

structure for all subjects at the baseline study visit. Hierarchical clustering was performed for taxa 

found in >20% abundance in at least one sample.  B) Boxplot showing the Shannon diversity 

index (Y-axis) by wound location (X-axis). P-values were calculated by pairwise Wilcoxon rank 

sum test and adjusted for multiple comparison by method of Holm. C) Relative abundance plot 

showing the mean proportions of taxa found in >1% abundance in all of the samples (Y-axis) by 
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wound location (X-axis). Taxa found in significantly different abundance between forefoot and 

hindfoot wounds are listed in Table S2. D) Boxplot showing the weighted UniFrac distances (Y-

axis) between subjects (baseline study visit only) and within subjects longitudinally (X-axis). The 

P-value was calculated by Wilcoxon rank sum test. Notches in boxplots display the 95% 

confidence interval around the median. 
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Figure 2 

The DFU mycobiome is temporally unstable. Five individual subject timelines showing the 

relative abundance and structure of fungal communities for DFUs that healed, did not heal within 

the 26 weeks of the study, or resulted in an amputation. Numbers on the X-axis represent study 

visit number and Y-axis represents proportion of taxa present. 
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Figure 3 

The DFU mycobiome is associated with clinical outcomes. A) Relative distribution of 

Ascomycota and Basidiomycota in specimens grouped by time to heal. Baseline specimens (left 

panel) were taken from viable wound tissue prior to sharp debridement and cleansing. All study 

visits after the baseline study visit are combined (right panel). P-values are calculated with an 

analysis of variance model and post-hoc Tukey HSD multiple comparison of means. B) A 

boxplot showing inter-visit weighted UniFrac distances (Y-axis) by end of study reason (X-axis) 

were not significantly different. Notches display the 95% confidence interval around the median. 

C) A timeline of weighted UniFrac distances (Y-axis) plotted by study visit (X-axis) for 

individual subjects and grouped by end of study reason (top panel = healed; middle panel = 

unhealed after 26 weeks of follow-up; bottom panel = amputated). Blue dots indicate that a 

complication was recorded at the study visit. Triangles indicate study visit at which an antibiotic 

was administered at or within the previous two-weeks. 
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Figure 4 

Pathogens are associated with necrotic tissue and poor outcomes. A) Mean proportion (%) (X-

axis) of pathogen (Y-axis;left panel) and allergen (Y-axis, right panel) taxa in the data set. B) 

Mean proportion of pathogens (Y-axis) by end of study reason (X-axis). Error bars indicate 

standard error of the mean. C) Mean proportion of pathogens, allergens, unclassified Fungi, and 

unclassified Ascomycota in samples grouped by the level of necrotic tissue present in the wound. 

The level of pathogens is significantly higher in ulcers with >75% necrotic tissue compared to all 

other levels of necrosis. P-values are calculated with an analysis of variance model and post-hoc 

Tukey HSD multiple comparison of means. D) Principal coordinate plot comparing samples by 

the weighted UniFrac distance. Percent variation explained by each principle coordinate is 

indicated by % next to each axis. Point size indicates necrotic tissue level, with larger points 

corresponding to greater amounts of necrotic tissue in the wound from which the sample was 
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taken. The proportions of allergens and pathogens was calculated by subtracting the proportion of 

pathogens from the proportion of allergens in each sample resulting in a scale of -1 (dominated by 

pathogens) to +1 (dominated by allergens).  A value of zero indicates either zero or equal 

proportions of each.  
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Figure 5 

Pathogens form inter-kingdom biofilms. Fluorescent confocal microscope images of mono- or co-

culture Candida albicans and Citrobacter freundii or Trichosporon asahii and Staphlococcus 

simulans. Biofilms were grown for 48 hrs. at 37ºC on polystyrene plates in RPMI 1649, 

GlutaMax media, washed to remove planktonic cells and stained with SYTO 9 and hexidium 

iodide (HI) prior to imaging. Fungi (large) and bacteria (small) can be distinguished by size. 

Fungi appear green and bacteria red in the merged images. The size of the scale bar for each row 

is labelled in the first column (SYTO 9) for each culture. The insets are zoomed in portions of the 

merged co-culture biofilm images.   
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Figure S1 

Heatmap illustrating positive (yellow) and negative (purple) correlations between microbiome 

factors and clinical factors at baseline. Correlations were calculated by the Spearman correlation 

coefficient. Significant correlations are marked with an asterisk (p=<0.05) and rho and p-values 

are summarized in Table S1.  



www.manaraa.com

86 

 

 

Figure S2 

Subjects with positive yeast culture result. The study visit that was culture positive is marked by 

(*) and the identified species are labelled. Relative abundance plots are shown for taxa identified 

by ITS1 analysis and found in >5 % abundance in each sample. Numbers on the X-axis represent 

study visit number and Y-axis represents proportion of taxa. 
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Figure S3 

Subjects with positive yeast culture result. A) Relative abundance plots are shown for bacterial 

taxa identified by 16S rRNA gene analysis and found in >1 % abundance in the entire dataset 

(384 samples). Numbers on the X-axis represent study visit number and Y-axis represents 

proportion of taxa. B) A timeline of weighted UniFrac distances (Y-axis) plotted by study visit 

(X-axis) for individual subjects. Blue lines indicate the fungal wuf distances and the red lines the 

bacterial wuf distances over time for each subject.  
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Figure S4 

Shannon Diversity Index for subjects administered an antibiotic (n=31) during the course of the 

study or experienced a complication (n=30) A) All subjects who received an antibiotic at least 

once during the study period or not at all. B) Shannon Index for samples obtained before, during 

or following antibiotic administration. C) Shannon Index for visits a complication occurred or did 

not occur. D) Shannon Index for samples corresponding to different antibiotic classes. Adjusted 

(Holm) P-values were calculated by pairwise Wilcoxon rank sum test. 
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Figure S5 

Dendogram and heatmap illustrating positive (blue) and negative (red) correlations between the 

taxa found in >1% abundance across the entire sample set and the pathogens and allergens 

groups. Correlations were calculated by the Spearman correlation coefficient. Allergens and 

pathogens groups are indicated with pink or blue bar, respectively, at the top of the heatmap.  
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Figure S6 

Dendogram and heatmap illustrating positive (pink) and negative (blue) correlations between the 

fungal and bacterial taxa found in >1% abundance across the entire sample set. Correlations were 

calculated by the Spearman correlation coefficient. Significant correlations are marked with an 

asterisk (p<0.05).   
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Figure S7 

Quantitative culture data. A) Quantitative counts for C. albicans and C. freundii planktonic and 

biofilm populations growing as mono-culture (m) or co-culture (cc). B) Quantitative counts for T. 

asahii and S. simulans planktonic and biofilm populations growing as mono-culture (m) or co-

culture (cc). All biofilm counts were obtained after washing the biofilms 2 x 1 mL of sterile 
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water. Counts are averaged across a minimum of two replicates and two serial dilutions per 

replicate. 
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3.12 Tables 

 

Table 1 

Subject Demographics and wound characteristics  

	 65	
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Tables 1631	
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 1641	

 1642	

 1643	

 1644	

  1645	

Table 1: Subject Demographics and wound 

characteristics 

  n 

Subjects  100 

Samples  384 

Sex (M/F)  78/22 

Type 2 Diabetes  87 

Ulcer Duration (wks), mean (SD)  33.1 (41.6) 

Ulcer Location  

 Forefoot 73 

 MidFoot 20 

 Heel 7 

End of Study Reason  

 Healed 75 

 Unhealed 5 

 Amputation 7 

 Other Infection 3 

 Dropped Study 10 

Subjects with detected ITS1  79 

Samples with detected ITS1   275 
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Table 2 

Distribution of the top 1% identified fungal taxa. 

	 66	

  1646	
Table 2: Distribution of top 1% identified fungal taxa 

Fungal Taxa % Samples No. Patients 

Ascomycota   

Cladosporium herbarum 41 56 

Candida albicans 22 47 

Unclassified Ascomycota 16 36 

Family  Nectriaceae 16 41 

Candida parapsilosis 15 37 

Aspergillus cibarius 12 30 

Epicoccum nigrum 9 27 

Penicillium sp 9 26 

Leptosphaerulina chartarum 7 23 

Penicillium bialowiezense 6 19 

Gibberella_zeae 6 18 

Hypocreales sp 4 14 

Order Capnodiales  4 15 

Basidiomycota   

Trichosporon asahii 10 24 

Trichosporon sp 4 12 

Rhodosporidium diobovatum 5 16 

Unclassified fungi 32 55 
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Table S1 

Summary of Spearman correlation coefficients and p-values for supplementary figure 1. 
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Taxa p-value 
Order Saccharomycetales 0.024  
Mycosphaerellaceae sp. 0.492  
Candida albicans 2.19 E-05 
Tremellales sp. 0.0191  
Sporobolomyces ruberrimus 0.0191 
Phlebia radiata 0.0191 
Trichosporon sp. 0.870  
Kluyveromyces marxianus 0.0191 
Antrodia xantha 0.0325  
Eurotiales sp. 0.0226 
Class Agaricomycetes 0.0226  
Candida xylopsoci 0.0191 
Ceriporia purpurea 0.0191 
 

Table S2:  

Differentially abundant taxa between forefoot and hindfoot wounds (p-values calculated by 

analysis of variance and adjusted by the Benjamini & Hochberg method) 
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CHAPTER 4 – Longitudinal study of the psoriasis-associated skin microbiome 

during therapy with ustekinumab  

 

The contents of this chapter are being prepared for submission as: 

Michael Loesche, Joseph Horwinski, Amanda Tyldsley, Elizabeth A. Grice. Longitudinal 

study of the psoriasis-associated skin microbiome during therapy with ustekinumab.  

 

4.1 Abstract 

 Psoriasis is a chronic autoimmune disease primarily affecting the skin and joints, but may 

have systemic inflammatory consequences. The worldwide prevalence of psoriasis may be as 

high as 3%, though this varies by geography and ethnicity. The etiology of psoriasis is currently 

unknown, but recent studies suggest that the microbiota of the skin may be involved. Despite this, 

our understanding of the role of the cutaneous microbiota in psoriasis is lacking. Previous studies 

have suggested that psoriatic lesions harbor a distinct microbiome compared to non-lesion skin, 

however, these studies are limited by small sample size. Moreover, only one study has provided 

longitudinal data. Here we present the results of a longitudinal study of the skin microbiome of 

psoriasis and its response to ustekinumab therapy with 112 weeks of follow-up. We sampled the 

microbiota of 114 subjects at six body sites, including the arm, axilla, buttock, leg, scalp, and 

trunk, at contralateral lesion and non-lesion sites. Differences detected between lesion and non-

lesion skin at baseline, were mild and body-site specific. After 28 weeks of ustekinumab therapy, 

specific taxonomic differences between lesion and non-lesion skin were no longer detectable. 

This was accompanied by a marked increase in sample variance, paradoxically resulting in 

increased dissimilarity between lesion and non-lesion skin. In addition, ustekinumab therapy 

induced moderate shifts in community structure, including increases in atypical skin bacteria such 
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as Propionibacterium species, which was shared by multiple body sites regardless of lesion 

status. After week 28, a subset of subjects were deprived therapy until recurrence of their lesion, 

after which they received a customized dosing frequency ranging from 12 to 24 weeks. After 112 

weeks of follow-up, we noted no differences of the microbiome between subjects receiving 

normal or tailored dosing frequencies. Our findings suggest that the effect of psoriasis lesions is 

perhaps secondary to alterations in community immunity on the cutaneous microbiome. Together 

our results confirm findings from previous studies, but also expand upon and provide nuance to 

our understanding of the skin microbiota in psoriasis. 

 

4.2 Background 

Psoriasis vulgaris (“plaque” psoriasis) is a chronic, immune-mediated disease primarily 

affecting the skin and joints, though an appreciation of its systemic effects is growing. Psoriasis 

lesions are classically described as well-demarcated, erythematous plaques covered with a silver 

scale, however, the severity and distribution of the plaques varies greatly (Nestle et al. 2009). The 

global prevalence of psoriasis is between 2% and 3% (Perera et al. 2012), though it varies 

globally, largely as a function of ethnicity and latitude, with higher rates in those of European 

ancestry and northern latitudes (Parisi et al. 2013). The exact mechanism underlying the 

pathogenesis of psoriasis remains unclear, though most models incorporate aberrant T cell and 

keratinocyte responses in addition to a component of genetic susceptibility.  Specifically, there is 

a growing appreciation of the role of the innate immune system in psoriasis pathogenesis, as 

inflammatory cytokines and cells associated with innate immunity are more prominent in 

psoriasis (Sweeney et al. 2011).  
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Because the innate immune system is the first line of defense against invading pathogens, 

many have questioned whether there is a microbial component contributing to the pathogenesis of 

psoriasis (Fry et al. 2013). There is a long-standing association between recent Group B 

Streptococcal infections and exacerbations of psoriasis generally and in particular guttate 

psoriasis subtype (Telfer et al. 1992; Leung et al. 1995; McFadden et al. 2009), however, anti-

streptococcal treatment does not seem to modify disease (Owen et al. 2000). The specific 

association with streptococcal species led to the hypothesis that psoriasis may be an inappropriate 

reaction to other bacteria colonizing the skin or even entire communities.  

 

Inflammatory bowel disease (IBD; ulcerative colitis and Crohn’s disease) is also 

immune-mediated and clearly associated with microbial dysbiosis in the gut (Kostic et al. 2014). 

Interestingly, the incidence of psoriasis is nearly five times higher in patients with Crohn’s 

disease and their immediate family (Lee et al. 1990), suggesting a systemic pathological 

commonality. Comparing the genetics of psoriasis and IBD also reveals recurring themes, 

implicating a multitude genes associated with the immune system, specifically the Th1 and Th17 

axes (Lees et al. 2011). Because clues to the pathogenesis of disease are often revealed in other 

diseases that similarly behave or overlap epidemiologically, we hypothesize that understanding 

the skin microbiota of patients with psoriasis is critical to understanding its underlying 

pathogenesis. 

 

 Our understanding of the skin microbiota in psoriasis is in its infancy. Previous studies 

have consistently identified differences between healthy control skin and psoriatic plaques; 

however, the specific differences identified have not always been consistent. Moreover, these 

early studies varied in sample type and sequencing methodology(Gao et al. 2008; Fahlén et al. 
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2012; Alekseyenko et al. 2013). Notwithstanding these differences, some trends have emerged. 

Compared to healthy skin, psoriasis lesions trend towards lower Actinobacteria and 

Propionibacterium levels (Gao et al. 2008; Fahlén et al. 2012). A later study by Alekseyenko et 

al also found decreased microbial diversity, decreases in the aggregate composition of common 

skin commensals such as Corynebacterium, Propionibacterium, Streptococcus, and 

Staphylococcus, and increased sample variance in psoriatic subjects versus healthy controls 

(Alekseyenko et al. 2013). Interestingly, even the unaffected skin of psoriasis subjects is 

qualitatively different from healthy skin, though less so than lesion skin, as demonstrated by the 

ability of machine learning algorithms to accurately classify skin microbiome samples (Statnikov 

et al. 2013).  

 

 In the present study, we address several important limitations of previous studies, which 

have largely aggregated samples from various anatomical skin sites, ignoring the 

microenvironment specificity of the skin microbiome (Grice et al. 2009) and potential for site-

specific trends. In addition, little is known of the longitudinal dynamics of the skin microbiota in 

response to systemic therapy.  Alekseyenko et al followed 17 subjects for 36 weeks of treatment, 

but did not detect any significant changes from baseline (Alekseyenko et al. 2013). However, 

subjects in this study received a variety of treatments, complicating direct comparisons, further 

compounded by the naturally high variance of the skin microbiota (Grice et al. 2009). Moreover, 

this and all previous ones were limited by small sample sizes, which limits the ability to detect 

subtle differences. 

 

 Here we present the results of a longitudinal study where 114 subjects received 

standardized therapy for their plaque psoriasis with up to 112 weeks of follow up. We present 
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evidence that confirms findings from previous studies, but also expands upon and provides 

nuance to our understanding of the skin microbiota in psoriasis. We reveal the body-site specific 

effects of psoriasis on the skin, with samples across 6 body sites for all subjects. We characterize 

the response of the skin microbiome to ustekinumab, a biologic therapy targeting IL-12 and IL-

23, over 112 weeks of follow-up. Finally, we reveal the effect of lesion recurrence and “subject-

tailored” dosing frequencies on the skin microbiota. 

 

4.3 Results: Phase I – Response to Ustekinumab 

4.3.1 Characterization of subject demographics and summary of study design 

114 subjects with psoriasis vulgaris (“plaque” psoriasis) were enrolled into a sub-study to 

examine skin microbiome changes with ustekinumab treatment. The sub-study was part of a 

longitudinal study to explore alternative dosing regimens for ustekinumab treatment. The study is 

divided into two phases (Fig 1, see Methods: Study Design). In Phase I, subjects received 28 

weeks of standardized treatment with ustekinumab. In Phase II, after 28 weeks of standardized 

therapy, subjects achieving a therapeutic response (PGA < 2) were randomized to either a 

standard maintenance regimen of weight-based dosing every 12 weeks (Group 1) or a “subject 

tailored” off-label dosage regimen (Group 2) (Fig S1 and S2). The results of the randomization 

process are summarized in Table 1. Twenty-five subjects failed to achieve a therapeutic response 

to therapy and were dropped from the study for Phase II analysis. Those that did not achieve PGA 

< 2 had significantly higher psoriasis severity scores at enrollment and baseline sampling of their 

microbiota, as measured by the PASI metric and the proportion of body surface area (BSA) 

affected. Additionally, a greater proportion of those subjects randomized  (Groups 1 and 2) were 

white when compared to the non-randomized group (Table 1).  
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4.3.2 Skin microbiome differences between lesion and non-lesion skin are mild 

and site specific.  

 We investigated the effect of psoriatic plaques on the composition of the skin microbiota 

at baseline for each of six body sites including the arm, axilla, buttock, leg, scalp, and trunk. 

These sites were selected for their predilection for lesions in psoriasis vulgaris. Furthermore, 

since it has previously been demonstrated that the skin microbiome drastically differs by body 

sites (REF), we performed all analyses in a site-specific manner, comparing plaque microbiota to 

that found on the contralateral unaffected site of the same subject (“control”). For the purpose of 

these analyses, Group 1, Group 2, and non-randomized subjects were included. We first 

compared relative abundance of taxa at the species level or the highest level of taxonomic 

classification achieved. Overall, clear and plaque sites were remarkably similar, though some 

body-site specific differences were detected (Fig 2A). In leg lesions, we detected decreases in the 

relative abundances of both Caulobacteraceae and Corynebacterium as compared to control leg 

sites (P < 0.05). In scalp lesions, we found an increase in Bacilli and decrease in 

Propionibacterium acnes relative abundance (P < 0.05) compared to control sites. At the phylum 

level, the leg, scalp, and trunk had higher levels of Actinobacteria in the lesions, while Firmicutes 

was significantly lower in the scalp and trunk lesions (P < 0.05) compared to their respective 

unaffected control sites. 

 

We also identified body-site specific differences in microbial diversity between psoriatic 

lesions and non-affected skin (Fig 2B). The buttock, scalp, and trunk all exhibited increased OTU 

richness in the lesion skin (P < 0.05) while the scalp and trunk also had higher Shannon diversity 

levels in lesion skin, indicating greater evenness in the microbiota (P < 0.05). The psoriatic 

lesions of the trunk had higher levels of phylogenetic diversity than the normal skin (P < 0.05). 
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The trunk demonstrated the most consistent results with all three diversity metrics indicating that 

lesion sites were more diverse than control non-lesion sites. 

 

Though we detected differences between the lesion and non-lesion skin at certain body 

sites, we wondered if there were less obvious patterns differentiating the two. We implemented a 

machine-learning approach to determine whether more subtle patterns of variation in the skin 

microbiome distinguish lesion from non-lesion sites at the baseline visit. For each body site, a 

random forest model was trained to identify psoriatic-lesion samples using exclusively OTU 

relative abundances. The models’ accuracy ranged from 60.5-87.8%. In the case of the arm, 

buttock, and trunk, the classification accuracy was significantly better than chance (Table 2). 

Attempts to accurately classify lesion and non-lesion skin failed at subsequent time points in the 

study, indicating that differences between lesion and unaffected skin were strongest at baseline 

prior to treatment. The classification capacities of our models are similar to or in some cases 

surpasses what has been reported in previous studies (Statnikov et al. 2013). This is likely due to 

the increased sample size and site specificity of the training data. 

 

4.3.3 Lesion and non-lesion skin microbiota respond similarly to ustekinumab 

therapy 

We next investigated how the microbiota of lesion and non-lesion sites changed as a 

result of the systemic therapy with ustekinumab. We compared the relative abundances of the 

major taxa over time at each body site, analyzing lesion and non-lesion control sites separately. 

We detected significant changes in 11 major taxa in at least one body site (Kruskal-Wallis test; P 

< 0.05, FDR adjusted), the majority of which were shared across more than one body site (Fig 

3A). Relative levels of Agrobacterium, Bradyrhizobiaceae, Caulobacteraceae, and Pseudomonas, 
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exhibited increases in their relative abundance in at least five of the six body sites (Fig 3B). 

Staphylococcus and S. epidermidis displayed slight decreases in four and five body sites, 

respectively. Acinetobacter, Bacilli, Gemellales, Peptoniphilus, and P. acnes demonstrated more 

body-site specific patterns. The lesion and non-lesion sites experienced similar changes, sharing 

22 of the 41 total findings of differential relative abundance. Surprisingly, there were more 

changes in bacterial taxa in the non-lesion sites than the lesion sites, 14 and 5 respectively (Fig 

3B). 

 

Because the control non-lesion sites experienced similar if not greater changes in specific 

bacterial taxa than lesion sites with treatment, we further investigated how much each site 

changed respective to its baseline microbiome. We accomplished this by calculating the weighted 

UniFrac (wUF) distances between baseline samples and samples collected at subsequent study 

visits. The wUF is a metric used to assess similarity between samples, which incorporates both 

the abundance and phylogenetic relationships of microbial communities in the calculation 

(Lozupone et al. 2010). Values of the wUF metric range from 0 to 1, with a score of 0 indicating 

complete dissimilarity between the samples and a score of 1 indicating complete similarity of the 

samples being compared. As expected, all body sites exhibited significant dissimilarity from their 

baseline sample, which ranged from 0.24-0.39 at week 4 and 0.29-0.45 at week 28 (Fig. 4). The 

leg and trunk both exhibited significantly higher rates of change in the lesion sites for the week 4 

and week 28 time points (P < 0.05). Of the body sites, scalp remained the most stable in both 

lesion and unaffected control sites. This may be a reflection of the highly sebaceous and haired 

microenvironment exerting selective pressure on the microbial communities.  
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4.3.4 Microbiota of lesion and non-lesion skin diverges with treatment 

We next evaluated whether differences between lesion and non-lesion skin dissipated 

with ustekinumab therapy. We first tested the persistence of the taxa that were differentially 

abundant at baseline (identified above). The baseline differences were no longer detectable by 

week 28, however, different taxa were identified at later time points that differed in lesion and 

non-lesion skin (Fig. 3C). For the scalp, there were higher levels of Finegoldia, Gemellales, 

Staphylococcus, and S. epidermidis in lesion compared to non-lesion skin at week 4. Lesions in 

the arm had higher levels of S. epidermidis and lower levels of Pseudomonas at week 28. The 

trunk demonstrated higher levels of Streptococcus in lesion skin at week 28. Moreover, there 

were no detectable differences in microbial diversity by week 28, with the exception of the trunk 

where the lesion sites were more diverse than the non-lesion sites (P < 0.05). This led us to 

conclude that lesion and non-lesion sites were becoming more similar with treatment. 

 

We then evaluated whether the microbial communities from lesion and non-lesion skin 

had indeed converged with ustekinumab treatment. We used the weighted UniFrac (wUF) 

dissimilarity metric to generate pairwise-distances between lesion and non-lesion samples. 

Paradoxically, all body sites exhibited similar trends towards divergence as treatment progresses, 

with the exception of the scalp  (Fig 5). This trend was significant in the case of the arm, buttock, 

and leg (P < 0.05). This finding appeared to directly contradict our previous results above. 

However, these are not mutually exclusive findings as a simultaneous increase in community 

variance and a resolution of differential selective pressures would yield similar results. The scalp 

proved to be the exception to general trend, showing significantly less divergence between lesion 

and non-lesion skin than the arm, buttock, and trunk sites (P < 0.05). As discussed before, this 
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may be due to the presence of hair and sebum on the scalp exerting stronger selective pressures 

on the microbiota than the effect of lesion or treatment.  

 

4.3.5 Greater heterogeneity within psoriatic lesions than non-lesion skin 

 We hypothesized that psoriasis lesions may disrupt mechanisms maintaining body-site 

specific microenvironments, such as sebum or sweat production. To test this, we assessed inter-

subject heterogeneity of lesion and non-lesion skin for each body site. We calculated the wUF 

distance between samples from different subjects at the same body site. At the baseline visit, we 

found that there was greater heterogeneity in lesion skin compared to non-lesion skin across all 

body sites except the axilla (P < 0.05, Fig 6A). With the exception of the arm, this pattern was 

maintained until week 28, though the magnitude of the difference diminished likely as a result of 

lesion improvement. Interestingly, as subjects’ treatment continues, intra-group heterogeneity 

continues to increase in all body sites, again indicating that ustekinumab treatment affects the 

skin microbiota systemically. 

 

 We next investigated whether body site niches became more distinct when compared to 

other body sites. We calculated the mean distance between body sites per subject via the wUF, as 

a measure of body site dispersion. At all time points, the non-lesion sites exhibited greater 

dispersion than the lesion sites (P < 0.05), though this was not significant during the baseline visit 

(Fig. 6B). However, both lesion and non-lesion body sites became more distinct with treatment, 

perhaps an indication that psoriasis impacts skin in ways that are subtler than plaques 

development. Interestingly, the lesion and non-lesion sites did not converge with therapy, 

possibly suggesting that the prior presence of a plaque has lasting effects. Together, these results 

suggest that psoriasis lesions diminish the distinctiveness of body site niches. 
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4.4 Results: Phase II – Duration of Ustekinumab Response 

4.4.1 The skin microbiome is not predictive of the duration of therapeutic 

response to ustekinumab  

 We assessed whether the skin microbiome was indicative of subjects’ duration of 

response to ustekinumab. To do this, we compared multiple features of the skin microbiome 

between subjects with different therapeutic response durations (12, 16, 20, and 24 weeks) during 

the randomization visit (week 28). In general, there were no significant differences between these 

groups in taxonomic composition, community diversity, or similarities between lesion and non-

lesion sites. The exception was the non-lesion scalp, which exhibited higher levels of Shannon 

diversity and OTU richness between the 16-week group and the 20-week groups for non-lesion 

sites at baseline (data not shown). For the lesion sites, the scalp showed higher levels of Shannon 

diversity between the 16-week group and the 24-week group during the 28-week time point. 

However, it is unclear whether this is associated with the underlying biology or a result of noise 

in a smaller sample set. 

 

 We then applied our machine learning approach, as before, to detect more subtle patterns 

in the microbial composition. We focused on the extremes of the possible therapeutic durations, 

12 and 24 weeks. We generated multiple models with three different classification tasks: 1) 12-

week group v. the rest, 2) 24-week group v. the rest, and 3) 12-week v. 24-week groups. This 

method also failed to significantly distinguish the samples in all cases (data not shown). It should 

be noted that this analysis is limited by our sample size, and true patterns may yet be found with 

larger data sets. 
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4.4.2 Recurrent lesions do not resemble original lesions 

 For subjects randomized to Group 2, the 28-week dose was withheld until their PGA 

score reached or exceeded 2. This presented us an opportunity to determine if the skin microbiota 

would return to their baseline state with recurrence of disease. We calculated the wUF distances 

between the baseline visit (week 0) and both week-28 and recurrence visits. We did not detect 

any differences between the two time points (Fig 7), nor did we find any difference between the 

lesion and non-lesion skin. This may be further evidence of the non-specific effects of psoriasis 

lesions on the skin microbiota. Alternatively, ustekinumab may have more subtle effects on the 

skin microbiota than the formation of skin lesions. 

 

4.4.3 No difference between standard and tailored dosing on effect of skin 

microbiome 

 A final sample was collected at week 112, at which point subjects had been on their 

dosing regimen for at least 70 weeks. We investigated whether different dosing regimens would 

impact the skin microbiota. We first compared the taxonomic composition of each group for both 

lesion and non-lesion skin sites. There were no differences detected between the study groups, 

and this was true of both lesion and non-lesion sites. We also did not find any differences in 

microbial diversity as measured by OTU richness, Shannon diversity, or phylogenetic diversity. 

We then used the wUF distances to examine associations between the skin microbiota and their 

respective treatment group and lesion status (Fig. 8). We tested for non-random clustering in 

these groups via body-site specific ADONIS models, which incorporated terms for lesion status 

and treatment group. We did not detect any differences for either term in any body site. These 

results suggest that the dosing regimen does not significantly affect the composition or diversity 

of microbial communities on the skin. 
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4.5 Discussion 

One of the challenges of the presented study is its sheer scale. Our data set includes 

samples from 114 subjects, five time points, and up to 12 sites per patient per time point, yielding 

over 4,700 possible samples. We endeavored to provide a comprehensive analysis of the skin 

microbiome in psoriatic patients, how it evolves with treatment, and how it responds to treatment 

withdrawal in a body-site specific manner. We built on the foundational work of previous reports 

and attempted to expand upon and contribute nuance to our understanding of the microbiome and 

its interactions with psoriasis.  

 

We found that psoriatic lesions exhibited a modified skin microbiome at the baseline 

study visit, before treatment had commenced. In line with previous studies, the effect of psoriasis 

lesions on the microbial composition and structure was relatively minor. Even so, the changes 

identified were specific to the body site, with no bacterial taxa being differentially abundant 

across more than one body site. Previous work has not commented on differences between body 

sites. The work presented here represents a significant advancement in our understanding of the 

psoriasis microbiome and importantly, should inform future study designs. 

 

Though we did not have a healthy control group for comparison, we noted an overall 

lower abundance of Propionibacterium and Staphylococcus and increased Corynebacterium in 

lesional skin compared to the healthy skin microbiome reported in Meisel et al, a study from our 

group that employed the exact same sample collection, processing, and sequencing methodology 

(Meisel et al. 2016). Moreover, the combined proportion of rare taxa (<1% abundance) made up a 
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larger fraction of the psoriasis-associated microbial communities than is typical for skin samples. 

This suggests that the skin of patients with psoriasis is less hospitable to typical skin bacteria, 

instead being colonized or contaminated by generally rare environmental bacteria.  

 

Unlike the skin disorder atopic dermatitis which has been studied extensively with regard 

to the skin microbiome and is consistently associated with large increases in S. aureus and 

parallel decreases in microbial diversity(Kong et al. 2012), there is little consensus on the specific 

bacterial taxa or diversity measures that define psoriasis. This could be a consequence of the 

diversity of sampling and sequencing methodologies implemented by the various studies, 

however, it could also be an artifact of the highly variable skin microbiota. Alternatively, 

psoriatic lesions may have minimal consequences on the microbiota of the skin. Because of the 

low bioburden of bacteria on human skin and the high exposure to environmental contaminants, 

the true effect of psoriasis on the skin microbiome may elude even a large study such as ours. A 

large focus of the work presented here is on exploring the level of heterogeneity in the skin 

microbiome of psoriasis, which furthers observations first made by Alekseyenko et al 

(Alekseyenko et al. 2013) in psoriasis and our own work on healthy skin (Grice et al. 2009). 

Lesion and non-lesion samples from the same subject were more similar to each other than either 

was to the same site in other subjects, which was true even after successful treatment. That is to 

say that unaffected skin has more in common with affected skin from the same subject than it has 

with unaffected skin in other subjects. This observation is simultaneously a possible explanation 

for the discrepancy of previous findings and a hurdle that future studies will need to grapple with 

when trying to delineate the effects of psoriasis versus the environment. 
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In the first phase of our study, we characterized the microbiome shifts secondary to a 

standardized treatment with ustekinumab. Only one study has explored the effect of systemic 

therapy for psoriasis in a longitudinal setting, though it was limited in sample size and surveyed a 

wide range of drugs including ustekinumab. The study presented here expands upon it in sample 

size, but also narrows the focus to ustekinumab. The focus on a single agent reduces the expected 

variance due to the administered drug; however, it does limit our ability to generalize our findings 

beyond ustekinumab.  

 

The differences we identified at baseline had all dissipated by the 28th week of treatment, 

however, other differences emerged transiently and as before were body-site specific. When we 

quantified the divergence between lesion and non-lesion sites, we found, unexpectedly, that the 

treatment increased the level of divergence between the two sites. This was an unexpected 

finding, as one would expect lesion and non-lesion sites to converge as the plaques dissipated. 

Moreover, the mean variance between samples from the same body site increased with treatment, 

for both lesion and non-lesion skin. This argues for the existence of some “constraining” factor of 

psoriasis that limits the variance seen systemically, which is relieved by therapy. A possible 

explanation for the “constraining” factor is the increased production of antimicrobial peptides in 

psoriasis, which may provide a strong selective pressure on the microbiota limiting its 

composition to resistant bacteria. Alternatively, this may be due to behavioral differences, such as 

scratching or the application of lotions and ointments that may homogenize the skin microbiota 

within a subject. 

 

We noted that as treatment progressed, the distinction between body sites increased, as 

measured by their mean wUF distance. Psoriatic lesions are known to impair certain homeostatic 
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functions of the skin, such as sweat production (Cormia and Kuykendall 1955; Johnson and 

Shuster 1969; Rittié et al. 2016). This may hamper the ability of the skin to create distinct 

microenvironments, leading to greater similarity between body sites. As treatment progresses and 

lesions regress, these structures will begin to function more normally and perhaps increase the 

specificity of body-site niches. It has been documented that these functions return to normal 

gradually, over the course of at least three months (Suskind 1954), which fits in with the timeline 

of our findings. Interestingly, lesion sites appeared to have a delayed response to the therapy, 

which suggests that psoriasis lesions may have lasting effects on the microbiota that are longer 

lived than deficiencies in sweat production. 

 

A recurring theme was the similar trends detected in lesion and non-lesion skin, perhaps 

indicating that unaffected skin is not necessarily physiologically normal. When we assayed the 

longitudinal changes in microbiome composition, we noted that the vast majority of findings were 

shared between the two. One hypothesis to explain the similarity is the systemic effect of 

psoriasis. Alternatively, it may be that ustekinumab impacts the skin’s microenvironments 

beyond the amelioration of psoriasis lesions. Regardless, it is interesting to note that ustekinumab 

treatment broadly affected the skin microbiota beyond lesion sites. 

 

During the second phase of the trial, subjects in Group 2 had therapy withheld until the 

recurrence of their skin lesions. Interestingly, the recurrence was not associated with a return to 

the microbiota of the baseline time point. This could be due to the relatively low lesion-scores 

(PGA > 2) that were used for thresholds or the proximity to ustekinumab dosing. Alternatively, 

this may be further evidence of the lack of a psoriasis-specific microbiome. We also compared 

the microbial responses of subjects receiving the standard dosing frequency (Group 1) or the 
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“tailored” frequency (Group 2). Notably, the skin microbiome was not remarkably different 

between the groups. Subjects receiving the prolonged 24-week dosing frequency would 

necessarily have less active drug in their system than those receiving the 12-week frequency, yet 

we found no differences between these groups. This suggests that the effect of ustekinumab on 

the skin microbiota has more to do with modulation of their skin phenotype than off-target effects 

of the drug on the skin microbes.  

 

4.6 Conclusions 

Several attempts have been made to characterize the effects of psoriasis on the microbiota 

of the skin (Fahlén et al. 2012; Alekseyenko et al. 2013; Statnikov et al. 2013; Takemoto et al. 

2014; Martin et al. 2015; Drago et al. 2016), though there is little consensus between these 

studies. Undoubtedly, some fraction of the inconsistency between studies is due to 

methodological differences in sample collection techniques (skin biopsies, scrapings, swabs), 

sequencing technologies (Sanger, 454-pyrosequencing, Illumina), and sample size. There is also 

considerable variation in which and how many body sites were sampled. Moreover, those studies 

that incorporated multiple body sites provided little if any analyses on the distinction between 

sites in their analysis. However, where all previous studies agree is that the effect they notice is 

small. Our results further this line of evidence and expand upon in several important ways. 

 

We demonstrate that the impact on the skin microbiome is body-site specific. This is 

important in interpreting the results from previous papers that made no distinction, but also will 

be important to consider in future study designs. We also reaffirm previous studies’ findings that 

the differences in the skin microbiome elicited by psoriasis lesions are small. However, we also 
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present evidence that may explain the difficulty in differentiating the two. We show that lesions 

have higher variance between subjects than non-lesion skin at baseline, confirming previous 

findings (Alekseyenko et al. 2013). This suggests that the effect of psoriatic lesions on the skin 

may be loosening normal selective pressures, rather than selecting for a different community 

type. Thus, special care must be applied when identifying differentially abundant bacterial 

species, so that they aren’t confused with stochastic fluctuations.  

 

The skin microbiome was broadly affected by the systemic administration of 

ustekinumab in both lesion and non-lesion skin. Moreover, lesion status was not associated with 

the extent of change experienced by the skin. This suggests that the effect of ustekinumab therapy 

is not limited to amelioration of plaques, but may alter the host-microbiota interactions across all 

skin sites. Ustekinumab is likely affecting the microbiota indirectly via modulation of 

inflammation rather than directly through off-target antibody interactions with the microbiota, as 

dosing frequency did not impact the composition of the skin microbiome. 

 

 Our study reaffirms and builds upon previous understandings of the skin microbiome and 

its interaction with psoriasis in several key areas. Our work is distinguished from previous studies 

in the scale, attention to body-site specific trends, standardized treatment, and the duration of 

follow-up. Our cohort nearly doubles the size of the previously largest study, and includes a 

comprehensive analysis of body-site specific patterns.  In contrast to previous longitudinal studies 

with multiple treatments and only 36 weeks of follow-up, our subjects received the same 

treatment and were followed for up to 112 weeks. Our results should inform future study design 

and may have medically relevant implications for diagnostics and therapeutics involving the skin 

microbiome.  
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4.7 Methods 

4.7.1 Study Design 

Subjects enrolled in the study were free of treatment, systemic or topical, for at least 4 weeks 

(depending on drug class) prior to beginning the study. Subjects were instructed to withhold 

showering, bathing, and using swimming pools or using topical emollients, soaps, shampoos, 

deodorants or other treatments and products for a full 24 hours prior to sampling of skin 

microbiota.    

 

Phase I: The first phase follows subjects’ response to ustekinumab therapy over the course of 

28 weeks. Subjects received ustekinumab doses at the baseline visit, after 4 weeks, and 

subsequently in 12-week intervals. Microbiome samples were taken at weeks 0, 4, and 28 at six 

body sites including the arm, axilla, buttock, leg, scalp, and trunk. Skin swabs were collected in 

an area clear of lesions and if possible a contralateral site affected by a plaque. At the 28-week 

time point, those achieving a therapeutic response (PGA < 2) were entered into the Phase II.  

 

Phase II: During the second phase, one third of subjects were randomized to either Group 1 

or Group 2. Group 1 received their next ustekinumab dose in accordance with the usual 12-week 

dosing regimen. Subjects in Group 2 received a “tailored therapy,” which entailed withholding 

their next dose until their PGA score equaled or exceeded 2. We define the visit at which this 

occurs as the “recurrence” visit. PGA scores were assessed in 4-week intervals at weeks 32, 36, 

and 40, corresponding 16, 20, and 24 weeks since their last dose. Once a subject experienced a 

recurrence of their psoriasis, they received their next dose of ustekinumab and subsequent doses 

at the greatest 4-week interval for which they were asymptomatic (PGA < 2). Thus if a subject 
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developed lesions at week 34 (18 weeks since their last dose), they would be prescribed a 16-

week regimen. If a subject’s psoriasis did not recur by week 40, they were prescribed a 24-week 

regimen. Microbiome samples were collected at the “recurrence” time point. If a subject did not 

develop symptoms by week 40 (24 weeks since last dose), they were prescribed a 24-week dosing 

regimen. A final time point was collected at week-112 for all randomized subjects. 

 

4.7.2 Sample Sequencing and Processing 

Subjects were enrolled at one of 23 clinical sites. Skin swabs were collected at six body 

sites (arm, axilla, buttock, leg, scalp, and trunk) at both lesion-free sites and contralateral lesion 

sites, if available. Amplification of the 16S rRNA gene V1-V3 region was performed as 

previously described (Meisel et al. 2016). Resulting amplicons were sequenced using the Illumina 

MiSeq platform with paired-end 300 bp ‘V3’ chemistry. [Sequences were assembled, 

demultiplexed, and filtered for quality via super secret Qi pipeline] resulting in 109,132,204 

sequences, which were then processed with QIIME 1.9.0 (Caporaso et al. 2010).  

 

Sequences were size filtered to be between 460 and 600 nucleotides, which resulted in 

88,780,568 reads and a median of 13,120 reads per sample. Because of the size of the data set, 

sequences were clustered into operational taxonomic units (OTU) with a modified open-reference 

OTU picking method. The reference set was generated by randomly subsampling 1% of 

sequences and performing de novo OTU picking using the UCLUST algorithm (Edgar 2010) with 

a 97% sequence-similarity threshold. For each OTU, the most common sequence was selected as 

its representative sequence. This representative set served as the reference for QIIME’s default 

UCLUST, open-reference OTU picking script, parallel_pick_otus_uclust_ref.py. OTUs were 

assigned taxonomy using the RDP classifier (Cole et al. 2013) with the Greengenes 97% 
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sequence-similarity database (DeSantis et al. 2006). Singletons, OTUs with only one sequence, 

were removed. OTU corresponding to Cyanobacteria, Delftia, or were otherwise unclassifiable 

were removed as contaminants. The remaining 133,398 OTUs were kept for subsequent analyses. 

 

Samples were then subsampled to 2,000 sequences per sample for estimation of alpha and 

beta diversity metrics. Microbial diversity was estimated using the following alpha diversity 

metrics: 1) number of observed OTUs (OTU richness); 2) Shannon diversity; and 3) Faith’s 

phylogenetic diversity. Sample similarity was estimated using the weighted UniFrac (Lozupone et 

al. 2010) beta diversity metric.  

 

4.7.3 Data Analysis 

 All analyses were performed using the R statistical package (R Core Team 2016). 

Comparisons of relative abundance, microbial diversity, or sample similarities were performed 

using Wilcoxon or Kruskal-Wallis tests where appropriate. P-value adjustments for multiple 

hypotheses testing were performed for the multiple taxonomic comparisons and testing between 

multiple time points by the false discovery rate method. Adjusted P-values less than 0.05 were 

considered significant. Calculation of NMDS coordinates and ADONIS testing for non-random 

clustering was performed via the vegan package (Oksanen et al.). We used the randomForest 

package (Liaw and Wiener 2002) in conjunction with Caret (Kuhn et al. 2016) to perform the 

machine learning analyses. The training set was created by randomly sampling 80% of subjects; 

the remaining 20% were reserved for testing. The number of OTUs was pruned by first removing 

near-zero variance and highly correlated (rho > 0.7) OTUs. We then performed recursive feature 

elimination (RFE) with subsets of OTU of 10, 25, 50, 100, and all OTUs combined to identify the 

ideal number of features to include. The random forest parameter mtry was tuned over five 
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iterations. Both RFE and parameter tuning was evaluated by optimizing the ROC score over 10-

fold cross-validation repeated three times. Classification accuracy greater than chance was tested 

with a Bernoulli binomial test.  
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4.9 Figures 

 

Figure 1 

Clinical trial design diagram. 114 subjects were enrolled and received standard treatment with 

ustekinumab at weeks 0, 4, and 16. At week 28, subjects with therapeutic responses (PGA < 2) 

were randomized to one of two treatment groups. Group 1 received a dose at week 28 and 

subsequently every 12 weeks. Group 2 subjects did not receive their dose until their PGA score 

had reached or exceeded 2, measured in 4-week intervals. The longest 4-week interval for which 

subjects’ PGA score was less than 2 defined their subsequent dosing frequency; this constituted 

their “tailored” regimen. Microbiome samples were taken at multiple time points, indicated by the 

orange circles on the time line. 

0 4 16 28 32 36 40 Weeks 112

Group 1 (n = 21): Maintenance Regimen
Wk 28: PGA < 2       q12wks

All Subjects (n = 114): 
Dose at Wks 0, 4, 16

Group 2 (n = 68): ‘Patient Tailored’ Maintenance Regimen

Wk 32 (n = 14): PGA ≥ 2       q12wks

Wk 36 (n = 18): PGA ≥ 2       q16wks

Wk 40 (n = 10): PGA ≥ 2        q20wks

Wk 40 (n = 23): PGA < 2       q24wks
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Figure 2 

The effect of the psoriatic lesions on the skin microbiota at baseline. A) Stacked bar plot 

depicting the mean relative abundances of the most abundant taxa of both lesion and non-lesion 

skin by body site. Colored boxes indicate the mean proportion of specific taxa contributing at 

least 1% to all samples. Significant differences are denoted by body site labels in the legend – 

arm (Ar), axilla (Ax), buttock (B), leg (L), scalp (S), and trunk (T).  B) Facetted boxplot of 

sample diversity for both lesion and non-lesion skin split by body site. Facets depict different 
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alpha diversity metrics including phylogenetic diversity (top), OTU richness (middle), and 

Shannon diversity (bottom). Significant findings are denoted by asterisk. 

 
Figure 3  

Longitudinal changes in taxonomic composition following ustekinumab treatment. (A) Plot 

shows the mean relative abundance for taxa identified as changing in at least one body site. 

Lesion and non-lesion skin are represented by orange and blue dots, respectively. Error bars 
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represent the standard error of the mean. (B) Results of Kruskal-Wallis test for longitudinal 

changes in relative abundance levels for each of the major taxa by body site. Colored tiles 

represent significant findings in the non-lesion site only (blue), lesion site only (orange), or both 

sites (purple). (C) Results of paired-Wilcoxon testing differences between lesion and non-lesion 

sites at week 0, 4, and 28. Yellow tiles represent significant findings. 
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Figure 4 

Lesion and non-lesion sites exhibit similar amounts of change due to ustekinumab therapy. Bar 

plot showing the mean weighted UniFrac distance between baseline (week 0) and subsequent 

visits (week 4 and 28). Data is split by body site. Non-lesion skin is represented by the blue bars, 

whereas lesion skin is represented by orange bars. Error bars depict the standard error of the 

mean. 
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Figure 5 

Divergence of lesion and non-lesion skin following treatment. Plot showing the mean weighted 

UniFrac distance between paired lesion and non-lesion skin samples at multiple time points. Error 

bars depict the standard error of the mean. Bar shading correspond to time points - week 0 

(white), week 4 (gray), and week 28 (dark gray). 
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Figure 6 

Body sites variance and distinctness increases with ustekinumab therapy. (A) Weighted UniFrac 

distances between subjects by body site and lesion status. Bars are colored by body site and 

shaded by lesion status. (B) Body site dispersion as measured by the mean weighted UniFrac 

distances between body sites within subjects.  Bars are shaded by lesion status. Error bars depict 

the standard error of the mean.  
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Figure 7 

Recurrent lesions do not resemble prior lesions. Weighted UniFrac distances between the baseline 

samples and either remission (week 28) or recurrence samples. Distances were calculated for both 

lesion and non-lesion skin. Panels split data by body site. Greater distances indicate greater 

dissimilarity. Error bars depict the standard error of the mean. 
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Figure 8 

Ustekinumab dosing frequency does not impact the skin microbiota. NMDS plot of weighted 

UniFrac distances for each body site at week 112. Samples are represented by points colored by 

their treatment group (green – Group 1, red – Group 2) and shaded by lesion status (dark – non-

lesion, light - lesion). Points that are closer together are more similar.  
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Figure S1 

Line plot showing the mean PGA score for each treatment group. Subjects were randomized to 

group 1 or 2 at week 28. There were 3 subjects that were randomized to group 2, but subsequently 

left the study. Subjects not achieving a therapeutic response (PGA < 2) were not randomized. 

Shaded box shows the time points where subjects in group 2 were allowed to develop recurrent 

lesions. Error bars depict the standard error of the mean. 
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Figure S2 

Subject randomization and dose frequency customization. Flow chart demonstrating how subjects 

were randomized and what steps were taken when choosing the ‘subject tailored’ dosing regimen. 
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4.10 Tables 

 

Table 1 

Characterization of subjects’ demographics and results of randomization process 

  

Overall q12w q16w q20w q24w
Subjects 21 68 14 18 10 23 25

Age 47.43 44.09 46.71 41.83 44.2 43.74 43.88
BMI 29.65 31.5 35.83 32.25 28.8 28.85 29.1
PGA 3.22 3.52 3.74 3.54 3.57 3.44 3.48
PASI 17.05 18.25 22.36 20.05 15.19 15.96 24.94
BSA 25.24 20.47 25.79 21.19 20.2 17.54 34.44

%	Female 0.38 0.32 0.36 0.28 0.2 0.43 0.28
%	White 0.81 0.96 0.93 0.94 1 0.96 0.64

%	Hispanic 0.1 0.13 0.29 0.11 0.1 0.04 0.16
%	Smoking 0.71 0.44 0.43 0.44 0.5 0.39 0.44
%	Diabetic 0.1 0.1 0.14 0.11 0.1 0.09 0.04

Sun	
Exposure

1.86 1.99 1.79 1.94 2.1 1.96 1.96

Outdoor	
Exposure

2.33 2.29 2.29 2.22 2.2 2.3 2.2

Group	1
Group	2 Not	

Randomized
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W0 Accuracy AUC p-value Significance 

Arm 87.8% 0.895 8.30E-07 *** 

Axilla 70.8% 0.547 4.20E-01 

 Buttock 77.8% 0.773 2.69E-02 * 

Leg 60.5% 0.675 1.43E-01 

 Scalp 56.4% 0.693 4.38E-01 

 Trunk 78.1% 0.868 3.79E-04 *** 

  

Table 2 

Psoriatic lesion classification accuracy by body site at the baseline (wk 0) visit.
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 CHAPTER 5 – Conclusions and Future Directions 

 

5.1 Conclusions and Future Directions 

 The work presented in this thesis represents a significant advancement in our 

understanding of the longitudinal dynamics of the cutaneous microbiota when afflicted by 

disease. In our studies of chronic wounds, we demonstrate for the first time the intrinsically high 

levels of microbial flux and their relations to outcomes. Chapter 2 explored the bacterial 

component, revealing the inverse relationship between community stability and the rate of 

healing. We also characterize the effects of multiple classes of antibiotics on the bacterial 

communities colonizing the wound. In Chapter 3, we uncover the fungal contributions to wound 

healing, their associations with co-resident bacteria, and their ability to form inter-kingdom, 

cooperative biofilms. Chapter 4 presents the largest and longest longitudinal study of the psoriasis 

microbiome, revealing how the cutaneous microbiota respond to therapy and lesion recurrence. 

Together these studies expand upon the foundational work generated by cross-sectional studies 

and provide a foundation for future longitudinal analyses of the cutaneous microbiome. 

 

We modeled the temporal dynamics of the diabetic foot ulcer (DFU) microbiota using 

discrete and continuous frameworks. The first approach presumed the presence of distinct 

bacterial community types, with the potential to direct the clinical course of the ulcer. This idea 

has been applied in many ecological analyses of microbial communities, and is an attractive 

approach for several reasons. Sample clustering dramatically reduces the variance and 

dimensionality of the data, making subsequent analyses more tractable. Clustering algorithms are 

agnostic to preconceived biases and are capable of detecting patterns often too subtle and 

complex for human observers. However, approaches to clustering differ in the importance 
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assigned to various community parameters, such as the weighting of sample parameters, ideal 

cluster sizes, and calculations for sample inclusion. Clustering results may differ between 

approaches, and it is often impossible to validate the results; however, these approaches can be of 

great utility in isolating a signal in noisy data. This was the case in our study, where our Markov-

chain analysis revealed the positive association between frequent transitions and healing rates. 

Moreover, wounds that became entrenched in community types dominated by Stahylococcus 

aureus and Streptococcus were more likely to experience a negative outcome. 

 

 To validate our results, we applied mixed-effect modeling of community stability, which 

provided greater resolution than the discrete transitions of our Markov-chain analysis. This 

confirmed our findings and revealed an inverse relationship with community stability and healing 

rates, which was apparent even after the first visit. Unsurprisingly, antibiotics led to increased 

dynamism in the wound. Together these results suggest that a stagnant wound microbiota is 

harmful to healing, and may reflect the failure of the wounds defenses to repel infection. This has 

significant clinical applications, as DFU do not exhibit the traditional signs of infection, making 

diagnosis of infection difficult. Thus, microbial dynamics may offer additional guidance for 

clinicians managing chronic wounds. 

 

The fungal communities of the wound may also reflect and contribute to the healing 

outcomes of chronic wounds. The work presented here is the first to perform metataxonomic 

methodologies to understanding these interactions. The DFU mycobiota was striking for its 

interpersonal variation and paradoxically low intra-sample diversity. Moreover, the mycobiota 

exhibited high turnover of its constituents visit-to-visit, though the wound was still more similar 

to itself over time than to other individuals at the same time. The high level of variance 
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introduced significant challenges for the analysis and pattern detection. However, patterns 

emerged once taxa were categorized as either pathogen or allergen. Wounds dominated by 

pathogens were more likely to have high levels of necrotic tissue and have poor outcomes. We 

also demonstrated the viability of Candida albicans and Citrobacter freudii, isolated from a 

single wound, to form cooperative, inter-kingdom biofilms. 

 

Our work on the chronic wound, from both the bacterial and fungal perspectives, has 

demonstrated that microbial dynamics can provide predictive power for stratifying patients at 

risk. These studies would be greatly augmented by the inclusion of metagenomic sequencing, 

which would reveal the functional capacity of the wound microbiota. The need for such studies is 

obviated when one considers the tremendous genetic heterogeneity even within members of the 

same species (Lapierre & Gogarten 2009). The prevalence of specific genes, such as those 

involved virulence or antibiotic resistance, may increase the predictive power of our models and 

yield biologically meaningful insight. To this end, we are actively pursing whole metagenome 

sequencing of the samples included in the presented studies.  

 

Future studies should increase the frequency of sampling to provide greater temporal 

resolution to the observed phenomenon. We measured the wound microbiota at 2-week sampling 

intervals, a limitation introduced by the use of total contact casts for offloading therapy. For many 

body sites, microbial communities tend to maintain relatively stable community structure over 

time(Ding & Schloss 2014). In addition, microbes in chronic wounds form robust biofilms (James 

et al. 2008), shielding its members from external perturbations. However, our 2-week sampling 

frequency may be masking interesting shorter-term dynamics, as the majority of bacteria replicate 
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on the order of minutes to hours. This may be particularly true of the community responses to 

antibiotic perturbations. 

 

Our work on the cutaneous microbiome represents the largest longitudinal study on the 

topic, both by number of subjects involved and the duration of follow-up. Similar to previous 

studies, we found psoriasis lesions to have mild consequences on the composition of the skin 

microbiota, however, this effect was body-site specific. One of the strengths of our study was the 

standardized medical intervention received by all subjects, which reduces the variance introduced 

by multiple therapies. We identified shifts in various taxa following therapy, but it is impossible 

to determine whether this is due to amelioration of the lesions or some other effect of 

ustekinumab. As in previous studies of subjects with primary immunodeficiencies, ustekinumab 

therapy appeared to make the skin more permissive of atypical skin bacteria, such as 

Pseudomonas species (Oh et al. 2013). In addition, the distinctiveness of body sites increased 

during the course of therapy, suggesting that the normal physiologic determinants of the skin 

microbiota were reestablishing themselves.  

 

As before, our understanding of the interactions between the skin microbiota and 

psoriasis would be enhanced by the addition of metagenomic sequencing. Metagenomic studies 

have demonstrated that the functional composition of the microbiome is markedly more 

consistent than the taxonomic composition (Human Microbiome Project Consortium 2012), likely 

a consequence of the redundancy of genes. In psoriasis, there may be many bacteria capable of 

filling an ecological niche, opened up by the dysfunctional cutaneous immune system. 

Metagenomic profiling may also reveal specific metabolic pathways or biosynthetic gene clusters 

that are associated with the development of or severity of psoriatic lesions.  



www.manaraa.com

151 

 

 

 There is a shortage of statistical frameworks available for researchers to model the 

dynamics of microbial communities in longitudinal settings. Longitudinal microbiome studies are 

plagued by few time points and irregular sampling frequencies, making pattern detection difficult. 

Moreover, studies are often designed to capture the perturbation and recovery of the microbiota to 

some environmental insult, which often do not follow linear assumptions. This is even more of an 

issue when experiments are attempting to elucidate the effects of stochastic perturbations. To 

combat these issues, researchers will often analyze their time points as discrete categories, rather 

than use a true longitudinal model. Some of these issues may be remedied by the use of additive 

models, but require more time points than most studies have available.  

 

Previous attempts have been made to combine regression techniques with generalized 

Lotka-Volterra equations (which model microbial dynamics as a function of competitive 

interactions) to model microbiota responses to external perturbations (Stein et al. 2013). This 

group went on to model the effects of stochastic antibiotic exposure on Clostridium difficile 

infection in patients hospitalized for cancer treatment to great success (Buffie et al. 2014). They 

identified specific bacterial species that reduced the risk of infection, due to metabolic pathways 

involved in modifying bile acids. Lotak-Voltera dynamics are exquisitely sensitive to initial 

conditions. Much like a double pendulum, the patterns appear random, though they obey specific 

rules. There is evidence to suggest that ecological dynamics operate in a non-linear or chaotic 

manner (Sugihara et al. 2012). This finding may lead to the inclusion of non-linear ecological 

modeling to the field of microbiome research. Indeed, approaches have been developed to allow 

the “stitching” together of short time-series to create the long timelines required for non-linear 

modeling (Hsieh et al. 2008). Such approaches will need to be modified to handle the high-
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dimensionality and the compositional nature of microbiome data, but may represent an attractive 

solution to the challenges faced by those studying microbial dynamics.  
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